These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 35137234)

  • 1. DETERMINATION OF THE NEUTRON CONTAMINATION DURING BRAIN RADIOTHERAPY USING A MODERATED-BORON TRIFLUORIDE DETECTOR AND THE MCNP MONTE CARLO CODE.
    Elmtalab S; Shanei A; Choopan Dastjerdi MH; Brkić H; Abedi I; Amouheidari A
    Radiat Prot Dosimetry; 2022 Mar; 198(3):129-138. PubMed ID: 35137234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neutron dose equivalent and neutron spectra in tissue for clinical linacs operating at 15, 18 and 20 MV.
    Martínez-Ovalle SA; Barquero R; Gómez-Ros JM; Lallena AM
    Radiat Prot Dosimetry; 2011 Nov; 147(4):498-511. PubMed ID: 21233098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photonuclear dose calculations for high-energy photon beams from Siemens and Varian linacs.
    Chibani O; Ma CM
    Med Phys; 2003 Aug; 30(8):1990-2000. PubMed ID: 12945965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neutron dose in and out of 18MV photon fields.
    Ezzati AO; Studenski MT
    Appl Radiat Isot; 2017 Apr; 122():186-192. PubMed ID: 28167445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Monte Carlo model for out-of-field dose calculation from high-energy photon therapy.
    Kry SF; Titt U; Followill D; Pönisch F; Vassiliev ON; White RA; Stovall M; Salehpour M
    Med Phys; 2007 Sep; 34(9):3489-99. PubMed ID: 17926952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Are neutrons responsible for the dose discrepancies between Monte Carlo calculations and measurements in the build-up region for a high-energy photon beam?
    Ding GX; Duzenli C; Kalach NI
    Phys Med Biol; 2002 Sep; 47(17):3251-61. PubMed ID: 12361221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Monte Carlo study of neutron contamination in presence of circular cones during stereotactic radiotherapy with 18 MV photon beams.
    Tajiki S; Nedaie HA; Rahmani F
    Biomed Phys Eng Express; 2020 Apr; 6(3):035016. PubMed ID: 33438661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Monte Carlo study on electron and neutron contamination caused by the presence of hip prosthesis in photon mode of a 15 MV Siemens PRIMUS linac.
    Bahreyni Toossi MT; Behmadi M; Ghorbani M; Gholamhosseinian H
    J Appl Clin Med Phys; 2013 Sep; 14(5):52-67. PubMed ID: 24036859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Monte Carlo study on neutron and electron contamination of an unflattened 18-MV photon beam.
    Mesbahi A
    Appl Radiat Isot; 2009 Jan; 67(1):55-60. PubMed ID: 18760613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the linac neutron dose profile for various depths and field sizes: a Monte Carlo study.
    Prasada DNY; Ciamaudi N; Fadli M; Tursinah R; Pawiro SA
    Biomed Phys Eng Express; 2021 Oct; 7(6):. PubMed ID: 34619664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semi-experimental assessment of neutron equivalent dose and secondary cancer risk for off-field organs in glioma patients undergoing 18-MV radiotherapy.
    Elmtalab S; Abedi I; Alirezaei Z; Choopan Dastjerdi MH; Geraily G; Karimi AH
    PLoS One; 2022; 17(7):e0271028. PubMed ID: 35905102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neutron spectra and dose equivalents calculated in tissue for high-energy radiation therapy.
    Kry SF; Howell RM; Salehpour M; Followill DS
    Med Phys; 2009 Apr; 36(4):1244-50. PubMed ID: 19472632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neutron and Photon Dose Rates in a D-T Neutron Generator Facility: MCNP Simulations and Experiments.
    Xu X; Yi C; Wanyue T; Yuanming S; Jingbin L; Yumin L; Long Z; Jiaxi L; Xiaoyi L
    Health Phys; 2020 Jun; 118(6):600-608. PubMed ID: 31972689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PHITS simulations of absorbed dose out-of-field and neutron energy spectra for ELEKTA SL25 medical linear accelerator.
    Puchalska M; Sihver L
    Phys Med Biol; 2015 Jun; 60(12):N261-70. PubMed ID: 26057186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of public doses due to a neutron calibration bunker.
    Suman H; Kharita MH; Yousef S
    Radiat Prot Dosimetry; 2010 Mar; 138(4):340-5. PubMed ID: 19946121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of the out-of-field dose from an accelerator-based neutron source for boron neutron capture therapy.
    Verdera A; Torres-Sánchez P; Praena J; Porras I
    Appl Radiat Isot; 2024 Oct; 212():111458. PubMed ID: 39111051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the production of neutrons in laminated barriers for 10 MV medical accelerator rooms.
    Facure A; da Silva AX; da Rosa LA; Cardoso SC; Rezende GF
    Med Phys; 2008 Jul; 35(7):3285-92. PubMed ID: 18697553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of Photoneutron Dose Measured by Bubble Detectors in Conventional Linacs and Cyberknife Unit: Effective Dose and Secondary Malignancy Risk Estimation.
    Biltekin F; Yeginer M; Ozyigit G
    Technol Cancer Res Treat; 2016 Aug; 15(4):560-5. PubMed ID: 26152750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neutron damage induced in cardiovascular implantable electronic devices from a clinical 18 MV photon beam: A Monte Carlo study.
    Ezzati AO; Studenski MT
    Med Phys; 2017 Nov; 44(11):5660-5666. PubMed ID: 28905394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoneutron production of a Siemens Primus linear accelerator studied by Monte Carlo methods and a paired magnesium and boron coated magnesium ionization chamber system.
    Becker J; Brunckhorst E; Schmidt R
    Phys Med Biol; 2007 Nov; 52(21):6375-87. PubMed ID: 17951849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.