BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 35137305)

  • 1. Robust-Deep: A Method for Increasing Brain Imaging Datasets to Improve Deep Learning Models' Performance and Robustness.
    Sanaat A; Shiri I; Ferdowsi S; Arabi H; Zaidi H
    J Digit Imaging; 2022 Jun; 35(3):469-481. PubMed ID: 35137305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DeepTOFSino: A deep learning model for synthesizing full-dose time-of-flight bin sinograms from their corresponding low-dose sinograms.
    Sanaat A; Shooli H; Ferdowsi S; Shiri I; Arabi H; Zaidi H
    Neuroimage; 2021 Dec; 245():118697. PubMed ID: 34742941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Projection Space Implementation of Deep Learning-Guided Low-Dose Brain PET Imaging Improves Performance over Implementation in Image Space.
    Sanaat A; Arabi H; Mainta I; Garibotto V; Zaidi H
    J Nucl Med; 2020 Sep; 61(9):1388-1396. PubMed ID: 31924718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning-based partial volume correction in standard and low-dose positron emission tomography-computed tomography imaging.
    Azimi MS; Kamali-Asl A; Ay MR; Zeraatkar N; Hosseini MS; Sanaat A; Dadgar H; Arabi H
    Quant Imaging Med Surg; 2024 Mar; 14(3):2146-2164. PubMed ID: 38545051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Utilizing deep learning techniques to improve image quality and noise reduction in preclinical low-dose PET images in the sinogram domain.
    Manoj Doss KK; Chen JC
    Med Phys; 2024 Jan; 51(1):209-223. PubMed ID: 37966121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesizing CT images from MR images with deep learning: model generalization for different datasets through transfer learning.
    Li W; Kazemifar S; Bai T; Nguyen D; Weng Y; Li Y; Xia J; Xiong J; Xie Y; Owrangi A; Jiang S
    Biomed Phys Eng Express; 2021 Feb; 7(2):. PubMed ID: 33545707
    [No Abstract]   [Full Text] [Related]  

  • 7. Decentralized collaborative multi-institutional PET attenuation and scatter correction using federated deep learning.
    Shiri I; Vafaei Sadr A; Akhavan A; Salimi Y; Sanaat A; Amini M; Razeghi B; Saberi A; Arabi H; Ferdowsi S; Voloshynovskiy S; Gündüz D; Rahmim A; Zaidi H
    Eur J Nucl Med Mol Imaging; 2023 Mar; 50(4):1034-1050. PubMed ID: 36508026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct attenuation correction of brain PET images using only emission data via a deep convolutional encoder-decoder (Deep-DAC).
    Shiri I; Ghafarian P; Geramifar P; Leung KH; Ghelichoghli M; Oveisi M; Rahmim A; Ay MR
    Eur Radiol; 2019 Dec; 29(12):6867-6879. PubMed ID: 31227879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Eliminating CT radiation for clinical PET examination using deep learning.
    Li Q; Zhu X; Zou S; Zhang N; Liu X; Yang Y; Zheng H; Liang D; Hu Z
    Eur J Radiol; 2022 Sep; 154():110422. PubMed ID: 35767933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning-assisted ultra-fast/low-dose whole-body PET/CT imaging.
    Sanaat A; Shiri I; Arabi H; Mainta I; Nkoulou R; Zaidi H
    Eur J Nucl Med Mol Imaging; 2021 Jul; 48(8):2405-2415. PubMed ID: 33495927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep learning-based convolutional neural network for intramodality brain MRI synthesis.
    Osman AFI; Tamam NM
    J Appl Clin Med Phys; 2022 Apr; 23(4):e13530. PubMed ID: 35044073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AI-driven attenuation correction for brain PET/MRI: Clinical evaluation of a dementia cohort and importance of the training group size.
    Ladefoged CN; Hansen AE; Henriksen OM; Bruun FJ; Eikenes L; Øen SK; Karlberg A; Højgaard L; Law I; Andersen FL
    Neuroimage; 2020 Nov; 222():117221. PubMed ID: 32750498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasibility of Deep Learning-Guided Attenuation and Scatter Correction of Whole-Body 68Ga-PSMA PET Studies in the Image Domain.
    Mostafapour S; Gholamiankhah F; Dadgar H; Arabi H; Zaidi H
    Clin Nucl Med; 2021 Aug; 46(8):609-615. PubMed ID: 33661195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthetic CT reconstruction using a deep spatial pyramid convolutional framework for MR-only breast radiotherapy.
    Olberg S; Zhang H; Kennedy WR; Chun J; Rodriguez V; Zoberi I; Thomas MA; Kim JS; Mutic S; Green OL; Park JC
    Med Phys; 2019 Sep; 46(9):4135-4147. PubMed ID: 31309586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MR-self Noise2Noise: self-supervised deep learning-based image quality improvement of submillimeter resolution 3D MR images.
    Jung W; Lee HS; Seo M; Nam Y; Choi Y; Shin NY; Ahn KJ; Kim BS; Jang J
    Eur Radiol; 2023 Apr; 33(4):2686-2698. PubMed ID: 36378250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning-based metal artefact reduction in PET/CT imaging.
    Arabi H; Zaidi H
    Eur Radiol; 2021 Aug; 31(8):6384-6396. PubMed ID: 33569626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel adversarial semantic structure deep learning for MRI-guided attenuation correction in brain PET/MRI.
    Arabi H; Zeng G; Zheng G; Zaidi H
    Eur J Nucl Med Mol Imaging; 2019 Dec; 46(13):2746-2759. PubMed ID: 31264170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Independent brain
    Armanious K; Küstner T; Reimold M; Nikolaou K; La Fougère C; Yang B; Gatidis S
    Hell J Nucl Med; 2019; 22(3):179-186. PubMed ID: 31587027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep-TOF-PET: Deep learning-guided generation of time-of-flight from non-TOF brain PET images in the image and projection domains.
    Sanaat A; Akhavanalaf A; Shiri I; Salimi Y; Arabi H; Zaidi H
    Hum Brain Mapp; 2022 Nov; 43(16):5032-5043. PubMed ID: 36087092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative analysis of MRI-guided attenuation correction techniques in time-of-flight brain PET/MRI.
    Mehranian A; Arabi H; Zaidi H
    Neuroimage; 2016 Apr; 130():123-133. PubMed ID: 26853602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.