These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 3513756)

  • 1. The mechanism of regulatory light chain dissociation from scallop myosin.
    Bennett AJ; Bagshaw CR
    Biochem J; 1986 Jan; 233(1):179-86. PubMed ID: 3513756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 8-Anilino-1-naphthalenesulphonate, a fluorescent probe for the regulatory light chain binding site of scallop myosin.
    Bennett AJ; Patel N; Wells C; Bagshaw CR
    J Muscle Res Cell Motil; 1984 Apr; 5(2):165-82. PubMed ID: 6725549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The kinetics of bivalent metal ion dissociation from myosin subfragments.
    Bennett AJ; Bagshaw CR
    Biochem J; 1986 Jan; 233(1):173-7. PubMed ID: 3006656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proximity relationships between sites on myosin and actin. Resonance energy transfer determination of the following distances, using a hybrid myosin: those between Cys-55 on the Mercenaria regulatory light chain, SH-1 on the Aequipecten myosin heavy chain, and Cys-374 of actin.
    Park HS; Tao T; Chantler PD
    Biochemistry; 1991 Apr; 30(13):3189-95. PubMed ID: 2009259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An immunological approach to myosin light-chain function in thick filament linked regulation. 2. Effects of anti-scallop myosin light-chain antibodies. Possible regulatory role for the essential light chain.
    Wallimann T; Szent-Györgyi AG
    Biochemistry; 1981 Mar; 20(5):1188-97. PubMed ID: 6452895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence intensity and UV absorption changes accompanying dissociation and association of regulatory light chain of scallop adductor myosin.
    Konno K; Arai K; Watanabe S
    J Biochem; 1983 Oct; 94(4):1061-6. PubMed ID: 6418724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium binding and calcium-sensitivity of heavy meromyosin and subfragment-1 from squid (Todarodes pacificus) mantle and scallop (Patinopecten yessoensis) adductor muscles.
    Kamiya S; Konno K
    Comp Biochem Physiol B; 1989; 92(3):481-6. PubMed ID: 2523274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of regulatory light chain on chymotryptic digestion of scallop adductor myosin.
    Konno K; Watanabe S
    J Biochem; 1985 Jun; 97(6):1645-51. PubMed ID: 3928614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two different preparations of subfragment-1 from scallop adductor myosin.
    Konno K; Watanabe S
    J Biochem; 1985 Jul; 98(1):141-8. PubMed ID: 2931424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulatory domains of myosins: influence of heavy chain on Ca(2+)-binding.
    Kalabokis VN; O'Neall-Hennessey E; Szent-Györgyi AG
    J Muscle Res Cell Motil; 1994 Oct; 15(5):547-53. PubMed ID: 7860702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Segmental flexibility and head-head interaction in scallop myosin. A study using saturation transfer electron paramagnetic resonance spectroscopy.
    Wells C; Bagshaw CR
    J Mol Biol; 1983 Feb; 164(1):137-57. PubMed ID: 6302270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An immunological approach to myosin light-chain function in thick filament linked regulation. 1. Characterization, specificity, and cross-reactivity of anti-scallop myosin heavy- and light-chain antibodies by competitive, solid-phase radioimmunoassay.
    Wallimann T; Szent-Györgyi AG
    Biochemistry; 1981 Mar; 20(5):1176-87. PubMed ID: 6784748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of divalent cations on the rotational mobility of myosin, heavy meromyosin and myosin subfragment-1 and on the binding of heavy meromyosin to actin.
    Highsmith S
    Biochim Biophys Acta; 1978 Sep; 536(1):156-64. PubMed ID: 361092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Site-directed mutagenesis of the regulatory light-chain Ca2+/Mg2+ binding site and its role in hybrid myosins.
    Reinach FC; Nagai K; Kendrick-Jones J
    Nature; 1986 Jul 3-9; 322(6074):80-3. PubMed ID: 3523256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium binding and conformation of regulatory light chains of smooth muscle myosin of scallop.
    Morita F; Kondo S; Tomari K; Minowa O; Ikura M; Hikichi K
    J Biochem; 1985 Feb; 97(2):553-61. PubMed ID: 4008468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the symmetric model for myosin-linked regulation: effect of site-directed mutations in the regulatory light chain on scallop myosin.
    Colegrave M; Patel H; Offer G; Chantler PD
    Biochem J; 2003 Aug; 374(Pt 1):89-96. PubMed ID: 12765546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid with rabbit skeletal DTNB-light chains of heavy meromyosin, myosin, and glycerinated fibers from Akazara scallop adductor.
    Ojima T; Nishita K; Watanabe S
    J Biochem; 1984 Oct; 96(4):1109-15. PubMed ID: 6394597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An intact heavy chain at the actin-subfragment 1 interface is required for ATPase activity of scallop myosin.
    Szentkiralyi EM
    J Muscle Res Cell Motil; 1987 Aug; 8(4):349-57. PubMed ID: 2958500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulatory light chains and scallop myosin. Form of light chain removal or reuptake is dependent on the presence of divalent cations.
    Chantler PD
    J Mol Biol; 1985 Feb; 181(4):557-60. PubMed ID: 3158744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation of the regulatory domain of scallop myosin: role of the essential light chain in calcium binding.
    Kwon H; Goodwin EB; Nyitray L; Berliner E; O'Neall-Hennessey E; Melandri FD; Szent-Györgyi AG
    Proc Natl Acad Sci U S A; 1990 Jun; 87(12):4771-5. PubMed ID: 2352947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.