These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 3513766)

  • 41. Proximal tubular phosphate reabsorption: molecular mechanisms.
    Murer H; Hernando N; Forster I; Biber J
    Physiol Rev; 2000 Oct; 80(4):1373-409. PubMed ID: 11015617
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Regulation of canine renal vesicle Pi transport by growth hormone and parathyroid hormone.
    Hammerman MR; Karl IE; Hruska KA
    Biochim Biophys Acta; 1980 Dec; 603(2):322-35. PubMed ID: 7459358
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of cadmium on Na-Pi cotransport kinetics in rabbit renal brush-border membrane vesicles.
    Park K; Kim KR; Kim JY; Park YS
    Toxicol Appl Pharmacol; 1997 Aug; 145(2):255-9. PubMed ID: 9266797
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Npt2 gene disruption confers resistance to the inhibitory action of parathyroid hormone on renal sodium-phosphate cotransport.
    Zhao N; Tenenhouse HS
    Endocrinology; 2000 Jun; 141(6):2159-65. PubMed ID: 10830304
    [TBL] [Abstract][Full Text] [Related]  

  • 45. NAD+-induced inhibition of phosphate transport in canine renal brush-border membranes. Mediation through a process other than or in addition to NAD+ hydrolysis.
    Hammerman MR; Corpus VM; Morrissey JJ
    Biochim Biophys Acta; 1983 Jul; 732(1):110-6. PubMed ID: 6871184
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Increased cAMP in proximal tubules is acute effect of nicotinamide analogues.
    Campbell PI; Abraham MI; Kempson SA
    Am J Physiol; 1989 Dec; 257(6 Pt 2):F1021-6. PubMed ID: 2557765
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Maturational effects of glucocorticoids on neonatal brush-border membrane phosphate transport.
    Arar M; Levi M; Baum M
    Pediatr Res; 1994 Apr; 35(4 Pt 1):474-8. PubMed ID: 8047384
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Phosphate uptake by proximal cells isolated from rabbit kidney: role of dexamethasone.
    Poujeol P; Vandewalle A
    Am J Physiol; 1985 Jul; 249(1 Pt 2):F74-83. PubMed ID: 2990240
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Adaptive regulation of Na(+)-dependent phosphate transport in the bovine renal epithelial cell line NBL-1. Identification of the phosphate transporter as a 55-kDa glycoprotein.
    Helps CR; McGivan J
    Eur J Biochem; 1991 Sep; 200(3):797-803. PubMed ID: 1915351
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Molecular mechanisms in the regulation of renal proximal tubular Na/phosphate cotransport.
    Murer H; Lötscher M; Kaissling B; Biber J
    Kidney Blood Press Res; 1996; 19(3-4):151-4. PubMed ID: 8887250
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Sodium cotransport processes in renal epithelial cell lines.
    Rabito CA
    Miner Electrolyte Metab; 1986; 12(1):32-41. PubMed ID: 2421146
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Hormonal effects on sodium cotransport systems.
    Sacktor B; Kinsella JL
    Ann N Y Acad Sci; 1985; 456():438-44. PubMed ID: 3004300
    [No Abstract]   [Full Text] [Related]  

  • 53. Nucleotide inhibition of phosphate transport in the renal proximal tubule.
    Lang RP; Yanagawa N; Nord EP; Sakhrani L; Lee SH; Fine LG
    Am J Physiol; 1983 Aug; 245(2):F263-71. PubMed ID: 6881341
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Heterogeneity of Pi transport by BBM from superficial and juxtamedullary cortex of rat.
    Levi M
    Am J Physiol; 1990 Jun; 258(6 Pt 2):F1616-24. PubMed ID: 2141765
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Defective PTH regulation of sodium-dependent phosphate transport in NHERF-1-/- renal proximal tubule cells and wild-type cells adapted to low-phosphate media.
    Cunningham R; E X; Steplock D; Shenolikar S; Weinman EJ
    Am J Physiol Renal Physiol; 2005 Oct; 289(4):F933-8. PubMed ID: 15942053
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Discovery of alpha-Klotho and FGF23 unveiled new insight into calcium and phosphate homeostasis].
    Nabeshima Y
    Clin Calcium; 2008 Jul; 18(7):923-34. PubMed ID: 18591743
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cellular/molecular control of renal Na/Pi-cotransport.
    Murer H; Forster I; Hilfiker H; Pfister M; Kaissling B; Lötscher M; Biber J
    Kidney Int Suppl; 1998 Apr; 65():S2-10. PubMed ID: 9551425
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Transepithelial phosphate transport in rabbit proximal tubular cells adapted to phosphate deprivation.
    Scheinman SJ; Reid R; Coulson R; Jones DB; Ford SM
    Am J Physiol; 1994 Jun; 266(6 Pt 1):C1609-18. PubMed ID: 8023892
    [TBL] [Abstract][Full Text] [Related]  

  • 59. P-glycoprotein inhibitors stimulate renal phosphate reabsorption in rats.
    Prié D; Couette S; Fernandes I; Silve C; Friedlander G
    Kidney Int; 2001 Sep; 60(3):1069-76. PubMed ID: 11532101
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Role of thyroid hormone in regulation of renal phosphate transport in young and aged rats.
    Alcalde AI; Sarasa M; Raldúa D; Aramayona J; Morales R; Biber J; Murer H; Levi M; Sorribas V
    Endocrinology; 1999 Apr; 140(4):1544-51. PubMed ID: 10098486
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.