BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 35138101)

  • 41. Detecting the "O-GlcNAc-ome"; detection, purification, and analysis of O-GlcNAc modified proteins.
    Zachara NE
    Methods Mol Biol; 2009; 534():251-79. PubMed ID: 19277546
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Diverse metabolic effects of O-GlcNAcylation in the pancreas but limited effects in insulin-sensitive organs in mice.
    Ida S; Morino K; Sekine O; Ohashi N; Kume S; Chano T; Iwasaki K; Harada N; Inagaki N; Ugi S; Maegawa H
    Diabetologia; 2017 Sep; 60(9):1761-1769. PubMed ID: 28642969
    [TBL] [Abstract][Full Text] [Related]  

  • 43. O-GlcNAc modifications regulate cell survival and epiboly during zebrafish development.
    Webster DM; Teo CF; Sun Y; Wloga D; Gay S; Klonowski KD; Wells L; Dougan ST
    BMC Dev Biol; 2009 Apr; 9():28. PubMed ID: 19383152
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Global identification of O-GlcNAc transferase (OGT) interactors by a human proteome microarray and the construction of an OGT interactome.
    Deng RP; He X; Guo SJ; Liu WF; Tao Y; Tao SC
    Proteomics; 2014 May; 14(9):1020-30. PubMed ID: 24536041
    [TBL] [Abstract][Full Text] [Related]  

  • 45. O-GlcNAc transferase inhibitors: current tools and future challenges.
    Trapannone R; Rafie K; van Aalten DM
    Biochem Soc Trans; 2016 Feb; 44(1):88-93. PubMed ID: 26862193
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fatty acid synthase inhibits the
    Groves JA; Maduka AO; O'Meally RN; Cole RN; Zachara NE
    J Biol Chem; 2017 Apr; 292(16):6493-6511. PubMed ID: 28232487
    [TBL] [Abstract][Full Text] [Related]  

  • 47. T cell development and the physiological role of O-GlcNAc.
    Abramowitz LK; Hanover JA
    FEBS Lett; 2018 Dec; 592(23):3943-3949. PubMed ID: 29904918
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Overview of the Assays to Probe
    Balsollier C; Pieters RJ; Anderluh M
    Molecules; 2021 Feb; 26(4):. PubMed ID: 33669256
    [No Abstract]   [Full Text] [Related]  

  • 49. O-linked β-N-acetylglucosamine modification of proteins is essential for foot process maturation and survival in podocytes.
    Ono S; Kume S; Yasuda-Yamahara M; Yamahara K; Takeda N; Chin-Kanasaki M; Araki H; Sekine O; Yokoi H; Mukoyama M; Uzu T; Araki SI; Maegawa H
    Nephrol Dial Transplant; 2017 Sep; 32(9):1477-1487. PubMed ID: 28339907
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Direct One-Step Fluorescent Labeling of O-GlcNAc-Modified Proteins in Live Cells Using Metabolic Intermediates.
    Tan HY; Eskandari R; Shen D; Zhu Y; Liu TW; Willems LI; Alteen MG; Madden Z; Vocadlo DJ
    J Am Chem Soc; 2018 Nov; 140(45):15300-15308. PubMed ID: 30296064
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Role of
    Chatham JC; Zhang J; Wende AR
    Physiol Rev; 2021 Apr; 101(2):427-493. PubMed ID: 32730113
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Increased O-GlcNAc levels correlate with decreased O-GlcNAcase levels in Alzheimer disease brain.
    Förster S; Welleford AS; Triplett JC; Sultana R; Schmitz B; Butterfield DA
    Biochim Biophys Acta; 2014 Sep; 1842(9):1333-9. PubMed ID: 24859566
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nucleocytoplasmic human O-GlcNAc transferase is sufficient for O-GlcNAcylation of mitochondrial proteins.
    Trapannone R; Mariappa D; Ferenbach AT; van Aalten DM
    Biochem J; 2016 Jun; 473(12):1693-702. PubMed ID: 27048592
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Characterization of O-GlcNAc cycling and proteomic identification of differentially O-GlcNAcylated proteins during G1/S transition.
    Drougat L; Olivier-Van Stichelen S; Mortuaire M; Foulquier F; Lacoste AS; Michalski JC; Lefebvre T; Vercoutter-Edouart AS
    Biochim Biophys Acta; 2012 Dec; 1820(12):1839-48. PubMed ID: 22967762
    [TBL] [Abstract][Full Text] [Related]  

  • 55. o-GlcNAc transferase is activated by CaMKIV-dependent phosphorylation under potassium chloride-induced depolarization in NG-108-15 cells.
    Song M; Kim HS; Park JM; Kim SH; Kim IH; Ryu SH; Suh PG
    Cell Signal; 2008 Jan; 20(1):94-104. PubMed ID: 18029144
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Potential coordination role between O-GlcNAcylation and epigenetics.
    Wu D; Cai Y; Jin J
    Protein Cell; 2017 Oct; 8(10):713-723. PubMed ID: 28488246
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Regulating the Regulators: Mechanisms of Substrate Selection of the O-GlcNAc Cycling Enzymes OGT and OGA.
    Stephen HM; Adams TM; Wells L
    Glycobiology; 2021 Aug; 31(7):724-733. PubMed ID: 33498085
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Protein O-GlcNAcylation: emerging mechanisms and functions.
    Yang X; Qian K
    Nat Rev Mol Cell Biol; 2017 Jul; 18(7):452-465. PubMed ID: 28488703
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Elevated O-GlcNAcylation promotes gastric cancer cells proliferation by modulating cell cycle related proteins and ERK 1/2 signaling.
    Jiang M; Qiu Z; Zhang S; Fan X; Cai X; Xu B; Li X; Zhou J; Zhang X; Chu Y; Wang W; Liang J; Horvath T; Yang X; Wu K; Nie Y; Fan D
    Oncotarget; 2016 Sep; 7(38):61390-61402. PubMed ID: 27542217
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ac
    Wang H; Guo J; Wang N; Wang J; Xue Q; Wang J; Liu W; Liu K; Cao X; Zhao W; Xi R; Niu Y; Wang P; Li J
    Bioorg Med Chem Lett; 2019 Mar; 29(6):802-805. PubMed ID: 30713024
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.