These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 35138379)
1. Transcriptome-wide association study in UK Biobank Europeans identifies associations with blood cell traits. Rowland B; Venkatesh S; Tardaguila M; Wen J; Rosen JD; Tapia AL; Sun Q; Graff M; Vuckovic D; Lettre G; Sankaran VG; Voloudakis G; Roussos P; Huffman JE; Reiner AP; Soranzo N; Raffield LM; Li Y Hum Mol Genet; 2022 Jul; 31(14):2333-2347. PubMed ID: 35138379 [TBL] [Abstract][Full Text] [Related]
2. A large-scale transcriptome-wide association study (TWAS) of 10 blood cell phenotypes reveals complexities of TWAS fine-mapping. Tapia AL; Rowland BT; Rosen JD; Preuss M; Young K; Graff M; Choquet H; Couper DJ; Buyske S; Bien SA; Jorgenson E; Kooperberg C; Loos RJF; Morrison AC; North KE; Yu B; Reiner AP; Li Y; Raffield LM Genet Epidemiol; 2022 Feb; 46(1):3-16. PubMed ID: 34779012 [TBL] [Abstract][Full Text] [Related]
3. Transcriptome-Wide Association Study of Blood Cell Traits in African Ancestry and Hispanic/Latino Populations. Wen J; Xie M; Rowland B; Rosen JD; Sun Q; Chen J; Tapia AL; Qian H; Kowalski MH; Shan Y; Young KL; Graff M; Argos M; Avery CL; Bien SA; Buyske S; Yin J; Choquet H; Fornage M; Hodonsky CJ; Jorgenson E; Kooperberg C; Loos RJF; Liu Y; Moon JY; North KE; Rich SS; Rotter JI; Smith JA; Zhao W; Shang L; Wang T; Zhou X; Reiner AP; Raffield LM; Li Y Genes (Basel); 2021 Jul; 12(7):. PubMed ID: 34356065 [TBL] [Abstract][Full Text] [Related]
4. A joint transcriptome-wide association study across multiple tissues identifies candidate breast cancer susceptibility genes. Gao G; Fiorica PN; McClellan J; Barbeira AN; Li JL; Olopade OI; Im HK; Huo D Am J Hum Genet; 2023 Jun; 110(6):950-962. PubMed ID: 37164006 [TBL] [Abstract][Full Text] [Related]
5. Statistical power of transcriptome-wide association studies. He R; Xue H; Pan W; Genet Epidemiol; 2022 Dec; 46(8):572-588. PubMed ID: 35766062 [TBL] [Abstract][Full Text] [Related]
6. Replication of Known and Identification of Novel Associations in Biobank-Scale Datasets: A Survey Using UK Biobank and FinnGen. Tkachenko AA; Changalidis AI; Maksiutenko EM; Nasykhova YA; Barbitoff YA; Glotov AS Genes (Basel); 2024 Jul; 15(7):. PubMed ID: 39062709 [TBL] [Abstract][Full Text] [Related]
7. MATS: a novel multi-ancestry transcriptome-wide association study to account for heterogeneity in the effects of cis-regulated gene expression on complex traits. Knutson KA; Pan W Hum Mol Genet; 2023 Apr; 32(8):1237-1251. PubMed ID: 36179104 [TBL] [Abstract][Full Text] [Related]
8. Accounting for nonlinear effects of gene expression identifies additional associated genes in transcriptome-wide association studies. Lin Z; Xue H; Malakhov MM; Knutson KA; Pan W Hum Mol Genet; 2022 Jul; 31(14):2462-2470. PubMed ID: 35043938 [TBL] [Abstract][Full Text] [Related]
9. Analyses of biomarker traits in diverse UK biobank participants identify associations missed by European-centric analysis strategies. Sun Q; Graff M; Rowland B; Wen J; Huang L; Miller-Fleming TW; Haessler J; Preuss MH; Chai JF; Lee MP; Avery CL; Cheng CY; Franceschini N; Sim X; Cox NJ; Kooperberg C; North KE; Li Y; Raffield LM J Hum Genet; 2022 Feb; 67(2):87-93. PubMed ID: 34376796 [TBL] [Abstract][Full Text] [Related]
10. METRO: Multi-ancestry transcriptome-wide association studies for powerful gene-trait association detection. Li Z; Zhao W; Shang L; Mosley TH; Kardia SLR; Smith JA; Zhou X Am J Hum Genet; 2022 May; 109(5):783-801. PubMed ID: 35334221 [TBL] [Abstract][Full Text] [Related]
11. Influence of tissue context on gene prioritization for predicted transcriptome-wide association studies. Li B; Veturi Y; Bradford Y; Verma SS; Verma A; Lucas AM; Haas DW; Ritchie MD Pac Symp Biocomput; 2019; 24():296-307. PubMed ID: 30864331 [TBL] [Abstract][Full Text] [Related]
12. Integrating eQTL and GWAS data characterises established and identifies novel migraine risk loci. Ghaffar A; ; Nyholt DR Hum Genet; 2023 Aug; 142(8):1113-1137. PubMed ID: 37245199 [TBL] [Abstract][Full Text] [Related]
14. Meta-Analysis of Transcriptome-Wide Association Studies across 13 Brain Tissues Identified Novel Clusters of Genes Associated with Nicotine Addiction. Ye Z; Mo C; Ke H; Yan Q; Chen C; Kochunov P; Hong LE; Mitchell BD; Chen S; Ma T Genes (Basel); 2021 Dec; 13(1):. PubMed ID: 35052378 [TBL] [Abstract][Full Text] [Related]
15. Leveraging lung tissue transcriptome to uncover candidate causal genes in COPD genetic associations. Lamontagne M; Bérubé JC; Obeidat M; Cho MH; Hobbs BD; Sakornsakolpat P; de Jong K; Boezen HM; ; Nickle D; Hao K; Timens W; van den Berge M; Joubert P; Laviolette M; Sin DD; Paré PD; Bossé Y Hum Mol Genet; 2018 May; 27(10):1819-1829. PubMed ID: 29547942 [TBL] [Abstract][Full Text] [Related]
16. Probabilistic integration of transcriptome-wide association studies and colocalization analysis identifies key molecular pathways of complex traits. Okamoto J; Wang L; Yin X; Luca F; Pique-Regi R; Helms A; Im HK; Morrison J; Wen X Am J Hum Genet; 2023 Jan; 110(1):44-57. PubMed ID: 36608684 [TBL] [Abstract][Full Text] [Related]
17. Bayesian genome-wide TWAS with reference transcriptomic data of brain and blood tissues identified 141 risk genes for Alzheimer's disease dementia. Guo S; Yang J Alzheimers Res Ther; 2024 Jun; 16(1):120. PubMed ID: 38824563 [TBL] [Abstract][Full Text] [Related]
18. Transcriptome-wide association study identifies novel candidate susceptibility genes for migraine. Meyers TJ; Yin J; Herrera VA; Pressman AR; Hoffmann TJ; Schaefer C; Avins AL; Choquet H HGG Adv; 2023 Jul; 4(3):100211. PubMed ID: 37415806 [TBL] [Abstract][Full Text] [Related]
19. Opportunities and challenges for transcriptome-wide association studies. Wainberg M; Sinnott-Armstrong N; Mancuso N; Barbeira AN; Knowles DA; Golan D; Ermel R; Ruusalepp A; Quertermous T; Hao K; Björkegren JLM; Im HK; Pasaniuc B; Rivas MA; Kundaje A Nat Genet; 2019 Apr; 51(4):592-599. PubMed ID: 30926968 [TBL] [Abstract][Full Text] [Related]
20. Transcriptome-wide association study of multiple myeloma identifies candidate susceptibility genes. Went M; Kinnersley B; Sud A; Johnson DC; Weinhold N; Försti A; van Duin M; Orlando G; Mitchell JS; Kuiper R; Walker BA; Gregory WM; Hoffmann P; Jackson GH; Nöthen MM; da Silva Filho MI; Thomsen H; Broyl A; Davies FE; Thorsteinsdottir U; Hansson M; Kaiser M; Sonneveld P; Goldschmidt H; Stefansson K; Hemminki K; Nilsson B; Morgan GJ; Houlston RS Hum Genomics; 2019 Aug; 13(1):37. PubMed ID: 31429796 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]