These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 35138451)
1. Modelling the cathodic reduction of 2,4-dichlorophenol in a microbial fuel cell. Leon-Fernandez LF; Fernandez-Morales FJ; Villaseñor Camacho J Bioprocess Biosyst Eng; 2022 Apr; 45(4):771-782. PubMed ID: 35138451 [TBL] [Abstract][Full Text] [Related]
2. "Self-degradation" of 2-chlorophenol in a sequential cathode-anode cascade mode bioelectrochemical system. Yang K; Zhao Y; Zhou X; Wang Q; Pedersen TH; Jia Z; Cabrera J; Ji M Water Res; 2021 Nov; 206():117740. PubMed ID: 34688096 [TBL] [Abstract][Full Text] [Related]
3. Dechlorination of 4-chlorophenol to phenol in bioelectrochemical systems. Wen Q; Yang T; Wang S; Chen Y; Cong L; Qu Y J Hazard Mater; 2013 Jan; 244-245():743-9. PubMed ID: 23183343 [TBL] [Abstract][Full Text] [Related]
4. The cooperative electrochemical oxidation of chlorophenols in anode-cathode compartments. Wang H; Wang JL J Hazard Mater; 2008 Jun; 154(1-3):44-50. PubMed ID: 17996367 [TBL] [Abstract][Full Text] [Related]
5. Synergic degradation of 2,4,6-trichlorophenol in microbial fuel cells with intimately coupled photocatalytic-electrogenic anode. Wang X; Hu J; Chen Q; Zhang P; Wu L; Li J; Liu B; Xiao K; Liang S; Huang L; Hou H; Yang J Water Res; 2019 Jun; 156():125-135. PubMed ID: 30909125 [TBL] [Abstract][Full Text] [Related]
6. Reductive dechlorination of chlorophenols in estuarine sediments of Lake Shinji and Lake Nakaumi. Itoh K; Mihara Y; Tanimoto N; Shimada T; Suyama K J Environ Sci Health B; 2010 Jul; 45(5):399-407. PubMed ID: 20512730 [TBL] [Abstract][Full Text] [Related]
7. Bio-electrodegradation of 2,4,6-Trichlorophenol by mixed microbial culture in dual chambered microbial fuel cells. Khan N; Khan MD; Ansari MY; Ahmad A; Khan MZ J Biosci Bioeng; 2019 Mar; 127(3):353-359. PubMed ID: 30482595 [TBL] [Abstract][Full Text] [Related]
8. Dual-response quadratic model for optimisation of electricity generation and chlorophenol degradation by electro-degradative Hassan H; Jin B; Dai S Environ Technol; 2022 Aug; 43(19):2867-2880. PubMed ID: 33749543 [TBL] [Abstract][Full Text] [Related]
9. Synergistic degradation for o-chlorophenol and enhancement of power generation by a coupled photocatalytic-microbial fuel cell system. Wang C; Wu G; Zhu X; Xing Y; Yuan X; Qu J Chemosphere; 2022 Apr; 293():133517. PubMed ID: 34995621 [TBL] [Abstract][Full Text] [Related]
10. Enhanced performance of air-cathode two-chamber microbial fuel cells with high-pH anode and low-pH cathode. Zhuang L; Zhou S; Li Y; Yuan Y Bioresour Technol; 2010 May; 101(10):3514-9. PubMed ID: 20093009 [TBL] [Abstract][Full Text] [Related]
11. Simultaneous enhancement of power generation and chlorophenol degradation in nonmodified microbial fuel cells using an electroactive biofilm carbon felt anode. Lu N; Li L; Wang C; Wang Z; Wang Y; Yan Y; Qu J; Guan J Sci Total Environ; 2021 Aug; 783():147045. PubMed ID: 34088112 [TBL] [Abstract][Full Text] [Related]
12. [Treatment of Cu(2+)-containing wastewater by microbial fuel cell with excess sludge as anodic substrate]. Liang M; Tao HC; Li SF; Li W; Zhang LJ; Ni JR Huan Jing Ke Xue; 2011 Jan; 32(1):179-85. PubMed ID: 21404684 [TBL] [Abstract][Full Text] [Related]
13. Carbon dioxide addition to microbial fuel cell cathodes maintains sustainable catholyte pH and improves anolyte pH, alkalinity, and conductivity. Fornero JJ; Rosenbaum M; Cotta MA; Angenent LT Environ Sci Technol; 2010 Apr; 44(7):2728-34. PubMed ID: 20178380 [TBL] [Abstract][Full Text] [Related]
14. Electrodeposited copper enhanced removal of 2,4-dichlorophenol in batch and flow reaction in Cu@CC-PS-MFC system. Zhu M; Wang H; Li C; Liu Q; Wang L; Tang J Chemosphere; 2023 Nov; 340():139801. PubMed ID: 37574086 [TBL] [Abstract][Full Text] [Related]
15. [Degradation Mechanism of 4-Chlorophenol on a Pd-Fe/graphene Multifunctional Catalytic Cathode]. Qi WZ; Wang F; Wang H; Shi Q; Pang L; Bian ZY Huan Jing Ke Xue; 2015 Jun; 36(6):2168-74. PubMed ID: 26387322 [TBL] [Abstract][Full Text] [Related]
16. Biological chromium(VI) reduction in the cathode of a microbial fuel cell. Tandukar M; Huber SJ; Onodera T; Pavlostathis SG Environ Sci Technol; 2009 Nov; 43(21):8159-65. PubMed ID: 19924938 [TBL] [Abstract][Full Text] [Related]
17. Tetracycline inhibition and transformation in microbial fuel cell systems: Performance, transformation intermediates, and microbial community structure. Long S; Zhao L; Chen J; Kim J; Huang CH; Pavlostathis SG Bioresour Technol; 2021 Feb; 322():124534. PubMed ID: 33360083 [TBL] [Abstract][Full Text] [Related]
18. A two-population bio-electrochemical model of a microbial fuel cell. Pinto RP; Srinivasan B; Manuel MF; Tartakovsky B Bioresour Technol; 2010 Jul; 101(14):5256-65. PubMed ID: 20171879 [TBL] [Abstract][Full Text] [Related]
19. Polyphasic characterization of two microbial consortia with wide dechlorination spectra for chlorophenols. Zhang C; Suzuki D; Li Z; Ye L; Katayama A J Biosci Bioeng; 2012 Nov; 114(5):512-7. PubMed ID: 22743203 [TBL] [Abstract][Full Text] [Related]
20. Performance of sodium bromate as cathodic electron acceptor in microbial fuel cell. Dai H; Yang H; Liu X; Zhao Y; Liang Z Bioresour Technol; 2016 Feb; 202():220-5. PubMed ID: 26710348 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]