BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 35138824)

  • 1. Production of Caffeic Acid with Co-fermentation of Xylose and Glucose by Multi-modular Engineering in
    Wang XH; Zhao C; Lu XY; Zong H; Zhuge B
    ACS Synth Biol; 2022 Feb; 11(2):900-908. PubMed ID: 35138824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic Engineering of
    Zhao C; Wang XH; Lu XY; Zong H; Zhuge B
    ACS Synth Biol; 2023 Jun; 12(6):1836-1844. PubMed ID: 37271978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of xylitol dehydrogenase (XYL2) on xylose fermentation by engineered Candida glycerinogenes.
    Zong H; Zhang C; Zhuge B; Lu X; Fang H; Sun J
    Biotechnol Appl Biochem; 2017 Jul; 64(4):590-599. PubMed ID: 27245615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glycerol Production from Undetoxified Lignocellulose Hydrolysate by a Multiresistant Engineered
    Jiang D; Wang M; Zhao X; Lu X; Zong H; Zhuge B
    J Agric Food Chem; 2024 Jan; 72(3):1630-1639. PubMed ID: 38194497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering Saccharomyces cerevisiae for Enhanced Production of Protopanaxadiol with Cofermentation of Glucose and Xylose.
    Gao X; Caiyin Q; Zhao F; Wu Y; Lu W
    J Agric Food Chem; 2018 Nov; 66(45):12009-12016. PubMed ID: 30350965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization.
    Krahulec S; Petschacher B; Wallner M; Longus K; Klimacek M; Nidetzky B
    Microb Cell Fact; 2010 Mar; 9():16. PubMed ID: 20219100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering E. coli for caffeic acid biosynthesis from renewable sugars.
    Zhang H; Stephanopoulos G
    Appl Microbiol Biotechnol; 2013 Apr; 97(8):3333-41. PubMed ID: 23179615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Level Biosynthesis of Chlorogenic Acid from Mixed Carbon Sources of Xylose and Glucose through a Rationally Refactored Pathway Network.
    Wang Y; Tan H; Wang Y; Qin JL; Zhao X; Di Y; Xie L; Wang Y; Zhao X; Li Z; Ma G; Jiang L; Liu B; Huang D
    J Agric Food Chem; 2024 Feb; 72(7):3633-3643. PubMed ID: 38330270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Establishment of a transient CRISPR-Cas9 genome editing system in Candida glycerinogenes for co-production of ethanol and xylonic acid.
    Zhu M; Sun L; Lu X; Zong H; Zhuge B
    J Biosci Bioeng; 2019 Sep; 128(3):283-289. PubMed ID: 30967334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of Xylitol from D-Xylose by Overexpression of Xylose Reductase in Osmotolerant Yeast Candida glycerinogenes WL2002-5.
    Zhang C; Zong H; Zhuge B; Lu X; Fang H; Zhuge J
    Appl Biochem Biotechnol; 2015 Jul; 176(5):1511-27. PubMed ID: 26018342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic engineering of Clostridium tyrobutyricum for enhanced butyric acid production from glucose and xylose.
    Fu H; Yu L; Lin M; Wang J; Xiu Z; Yang ST
    Metab Eng; 2017 Mar; 40():50-58. PubMed ID: 28040464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced protopanaxadiol production from xylose by engineered Yarrowia lipolytica.
    Wu Y; Xu S; Gao X; Li M; Li D; Lu W
    Microb Cell Fact; 2019 May; 18(1):83. PubMed ID: 31103047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a co-culture system for green production of caffeic acid from sugarcane bagasse hydrolysate.
    Wang X; Zhao C; Lu X; Zong H; Zhuge B
    Front Microbiol; 2024; 15():1379688. PubMed ID: 38567071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-situ muconic acid extraction reveals sugar consumption bottleneck in a xylose-utilizing Saccharomyces cerevisiae strain.
    Nicolaï T; Deparis Q; Foulquié-Moreno MR; Thevelein JM
    Microb Cell Fact; 2021 Jun; 20(1):114. PubMed ID: 34098954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrative expression vectors for overexpression of xylitol dehydrogenase (XYL2) in Osmotolerant yeast, Candida glycerinogenes WL2002-5.
    Zhang C; Zong H; Zhuge B; Lu X; Fang H; Zhuge J
    J Ind Microbiol Biotechnol; 2015 Jan; 42(1):113-24. PubMed ID: 25363139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic engineering of Corynebacterium glutamicum for the production of 3-hydroxypropionic acid from glucose and xylose.
    Chen Z; Huang J; Wu Y; Wu W; Zhang Y; Liu D
    Metab Eng; 2017 Jan; 39():151-158. PubMed ID: 27918882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deletion of D-ribulose-5-phosphate 3-epimerase (RPE1) induces simultaneous utilization of xylose and glucose in xylose-utilizing Saccharomyces cerevisiae.
    Shen MH; Song H; Li BZ; Yuan YJ
    Biotechnol Lett; 2015 May; 37(5):1031-6. PubMed ID: 25548118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intelligent self-control of carbon metabolic flux in SecY-engineered Escherichia coli for xylitol biosynthesis from xylose-glucose mixtures.
    Guo Q; Ullah I; Zheng LJ; Gao XQ; Liu CY; Zheng HD; Fan LH; Deng L
    Biotechnol Bioeng; 2022 Feb; 119(2):388-398. PubMed ID: 34837379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic Engineering of Saccharomyces cerevisiae for Production of Shinorine, a Sunscreen Material, from Xylose.
    Park SH; Lee K; Jang JW; Hahn JS
    ACS Synth Biol; 2019 Feb; 8(2):346-357. PubMed ID: 30586497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systems metabolic engineering of Corynebacterium glutamicum for high-level production of 1,3-propanediol from glucose and xylose.
    Li Z; Dong Y; Liu Y; Cen X; Liu D; Chen Z
    Metab Eng; 2022 Mar; 70():79-88. PubMed ID: 35038553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.