BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 35138824)

  • 21. Metabolic engineering of Corynebacterium glutamicum S9114 to enhance the production of l-ornithine driven by glucose and xylose.
    Zhang B; Gao G; Chu XH; Ye BC
    Bioresour Technol; 2019 Jul; 284():204-213. PubMed ID: 30939382
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Engineering a synthetic anaerobic respiration for reduction of xylose to xylitol using NADH output of glucose catabolism by Escherichia coli AI21.
    Iverson A; Garza E; Manow R; Wang J; Gao Y; Grayburn S; Zhou S
    BMC Syst Biol; 2016 Apr; 10():31. PubMed ID: 27083875
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genetic engineering of an industrial yeast Candida glycerinogenes for efficient production of 2-phenylethanol.
    Wang Y; Zhang Z; Lu X; Zong H; Zhuge B
    Appl Microbiol Biotechnol; 2020 Dec; 104(24):10481-10491. PubMed ID: 33180170
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Toward "homolactic" fermentation of glucose and xylose by engineered Saccharomyces cerevisiae harboring a kinetically efficient l-lactate dehydrogenase within pdc1-pdc5 deletion background.
    Novy V; Brunner B; Müller G; Nidetzky B
    Biotechnol Bioeng; 2017 Jan; 114(1):163-171. PubMed ID: 27426989
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Understanding Functional Roles of Native Pentose-Specific Transporters for Activating Dormant Pentose Metabolism in Yarrowia lipolytica.
    Ryu S; Trinh CT
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150499
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Muconic acid production from glucose and xylose in Pseudomonas putida via evolution and metabolic engineering.
    Ling C; Peabody GL; Salvachúa D; Kim YM; Kneucker CM; Calvey CH; Monninger MA; Munoz NM; Poirier BC; Ramirez KJ; St John PC; Woodworth SP; Magnuson JK; Burnum-Johnson KE; Guss AM; Johnson CW; Beckham GT
    Nat Commun; 2022 Aug; 13(1):4925. PubMed ID: 35995792
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metabolic engineering of Escherichia coli for efficient production of L-5-hydroxytryptophan from glucose.
    Zhang Z; Yu Z; Wang J; Yu Y; Li L; Sun P; Fan X; Xu Q
    Microb Cell Fact; 2022 Sep; 21(1):198. PubMed ID: 36153615
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metabolic engineering of Escherichia coli for shikimate pathway derivative production from glucose-xylose co-substrate.
    Fujiwara R; Noda S; Tanaka T; Kondo A
    Nat Commun; 2020 Jan; 11(1):279. PubMed ID: 31937786
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Balancing Pyruvate Node Based on a Dual-Layered Dynamic Regulation System to Improve the Biosynthesis of Caffeic Acid in
    Wang X; Zhao C; Lu X; Zong H; Zhuge B
    J Agric Food Chem; 2023 Jun; 71(23):8981-8990. PubMed ID: 37254503
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Systematic approach to engineer Escherichia coli pathways for co-utilization of a glucose-xylose mixture.
    Chiang CJ; Lee HM; Guo HJ; Wang ZW; Lin LJ; Chao YP
    J Agric Food Chem; 2013 Aug; 61(31):7583-90. PubMed ID: 23848609
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metabolic engineering of Clostridium tyrobutyricum for n-butanol production through co-utilization of glucose and xylose.
    Yu L; Xu M; Tang IC; Yang ST
    Biotechnol Bioeng; 2015 Oct; 112(10):2134-41. PubMed ID: 25894463
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metabolic engineering of Corynebacterium glutamicum for shikimate overproduction by growth-arrested cell reaction.
    Kogure T; Kubota T; Suda M; Hiraga K; Inui M
    Metab Eng; 2016 Nov; 38():204-216. PubMed ID: 27553883
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improving glucose and xylose assimilation in Azotobacter vinelandii by adaptive laboratory evolution.
    Millán C; Peña C; Flores C; Espín G; Galindo E; Castillo T
    World J Microbiol Biotechnol; 2020 Mar; 36(3):46. PubMed ID: 32140791
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Performance testing of Zymomonas mobilis metabolically engineered for cofermentation of glucose, xylose, and arabinose.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 2002; 98-100():429-48. PubMed ID: 12018270
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ethanol production from lignocellulosic hydrolysates using engineered Saccharomyces cerevisiae harboring xylose isomerase-based pathway.
    Ko JK; Um Y; Woo HM; Kim KH; Lee SM
    Bioresour Technol; 2016 Jun; 209():290-6. PubMed ID: 26990396
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metabolic flux analysis model for optimizing xylose conversion into ethanol by the natural C5-fermenting yeast Candida shehatae.
    Bideaux C; Montheard J; Cameleyre X; Molina-Jouve C; Alfenore S
    Appl Microbiol Biotechnol; 2016 Feb; 100(3):1489-1499. PubMed ID: 26536879
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metabolic engineering of Saccharomyces cerevisiae to produce 1-hexadecanol from xylose.
    Guo W; Sheng J; Zhao H; Feng X
    Microb Cell Fact; 2016 Feb; 15():24. PubMed ID: 26830023
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Systems metabolic engineering of xylose-utilizing Corynebacterium glutamicum for production of 1,5-diaminopentane.
    Buschke N; Becker J; Schäfer R; Kiefer P; Biedendieck R; Wittmann C
    Biotechnol J; 2013 May; 8(5):557-70. PubMed ID: 23447448
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineering Escherichia coli for the utilization of ethylene glycol.
    Pandit AV; Harrison E; Mahadevan R
    Microb Cell Fact; 2021 Jan; 20(1):22. PubMed ID: 33482812
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Xylose assimilation enhances the production of isobutanol in engineered Saccharomyces cerevisiae.
    Lane S; Zhang Y; Yun EJ; Ziolkowski L; Zhang G; Jin YS; Avalos JL
    Biotechnol Bioeng; 2020 Feb; 117(2):372-381. PubMed ID: 31631318
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.