BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 35138824)

  • 41. Metabolic Engineering of
    Yin W; Cao Y; Jin M; Xian M; Liu W
    ACS Synth Biol; 2021 Sep; 10(9):2266-2275. PubMed ID: 34412469
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Establishment of low-cost production platforms of polyhydroxyalkanoate bioplastics from Halomonas cupida J9.
    Wang S; Liu Y; Guo H; Meng Y; Xiong W; Liu R; Yang C
    Biotechnol Bioeng; 2024 Jul; 121(7):2106-2120. PubMed ID: 38587130
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Spatiotemporal Regulation and Transport Engineering for Sustainable Production of Geraniol in
    Zhao C; Wang X; Lu X; Zong H; Zhuge B
    J Agric Food Chem; 2024 Mar; 72(9):4825-4833. PubMed ID: 38408332
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A molecular transporter engineering approach to improving xylose catabolism in Saccharomyces cerevisiae.
    Young EM; Comer AD; Huang H; Alper HS
    Metab Eng; 2012 Jul; 14(4):401-11. PubMed ID: 22445945
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Rapid ethanol production at elevated temperatures by engineered thermotolerant Kluyveromyces marxianus via the NADP(H)-preferring xylose reductase-xylitol dehydrogenase pathway.
    Zhang J; Zhang B; Wang D; Gao X; Sun L; Hong J
    Metab Eng; 2015 Sep; 31():140-52. PubMed ID: 26253204
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Biosynthetic strategies to produce xylitol: an economical venture.
    Xu Y; Chi P; Bilal M; Cheng H
    Appl Microbiol Biotechnol; 2019 Jul; 103(13):5143-5160. PubMed ID: 31101942
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Metabolic engineering and classical selection of the methylotrophic thermotolerant yeast Hansenula polymorpha for improvement of high-temperature xylose alcoholic fermentation.
    Kurylenko OO; Ruchala J; Hryniv OB; Abbas CA; Dmytruk KV; Sibirny AA
    Microb Cell Fact; 2014 Aug; 13():122. PubMed ID: 25145644
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Enhancement of D-lactic acid production from a mixed glucose and xylose substrate by the Escherichia coli strain JH15 devoid of the glucose effect.
    Lu H; Zhao X; Wang Y; Ding X; Wang J; Garza E; Manow R; Iverson A; Zhou S
    BMC Biotechnol; 2016 Feb; 16():19. PubMed ID: 26895857
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Engineering E. coli for simultaneous glucose-xylose utilization during methyl ketone production.
    Wang X; Goh EB; Beller HR
    Microb Cell Fact; 2018 Jan; 17(1):12. PubMed ID: 29374483
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Large Flux Supply of NAD(H) under Aerobic Conditions by
    Wang M; Jiang D; Lu X; Zong H; Zhuge B
    ACS Synth Biol; 2024 Jun; 13(6):1716-1726. PubMed ID: 38733342
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Metabolic and process engineering for microbial production of protocatechuate with Corynebacterium glutamicum.
    Labib M; Görtz J; Brüsseler C; Kallscheuer N; Gätgens J; Jupke A; Marienhagen J; Noack S
    Biotechnol Bioeng; 2021 Nov; 118(11):4414-4427. PubMed ID: 34343343
    [TBL] [Abstract][Full Text] [Related]  

  • 52. De novo biosynthesis of p-coumaric acid and caffeic acid from carboxymethyl-cellulose by microbial co-culture strategy.
    Cai M; Liu J; Song X; Qi H; Li Y; Wu Z; Xu H; Qiao M
    Microb Cell Fact; 2022 May; 21(1):81. PubMed ID: 35538542
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Engineering Bacillus subtilis for acetoin production from glucose and xylose mixtures.
    Chen T; Liu WX; Fu J; Zhang B; Tang YJ
    J Biotechnol; 2013 Dec; 168(4):499-505. PubMed ID: 24120578
    [TBL] [Abstract][Full Text] [Related]  

  • 54. High-level β-carotene production from xylose by engineered Saccharomyces cerevisiae without overexpression of a truncated HMG1 (tHMG1).
    Sun L; Atkinson CA; Lee YG; Jin YS
    Biotechnol Bioeng; 2020 Nov; 117(11):3522-3532. PubMed ID: 33616900
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Engineering Pediococcus acidilactici with xylose assimilation pathway for high titer cellulosic l-lactic acid fermentation.
    Qiu Z; Gao Q; Bao J
    Bioresour Technol; 2018 Feb; 249():9-15. PubMed ID: 29035728
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Deletion of four genes in Escherichia coli enables preferential consumption of xylose and secretion of glucose.
    Diaz CAC; Bennett RK; Papoutsakis ET; Antoniewicz MR
    Metab Eng; 2019 Mar; 52():168-177. PubMed ID: 30529131
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Stepwise metabolic engineering of Candida tropicalis for efficient xylitol production from xylose mother liquor.
    Zhang L; Chen Z; Wang J; Shen W; Li Q; Chen X
    Microb Cell Fact; 2021 May; 20(1):105. PubMed ID: 34034730
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Global gene expression differences associated with changes in glycolytic flux and growth rate in Escherichia coli during the fermentation of glucose and xylose.
    Gonzalez R; Tao H; Shanmugam KT; York SW; Ingram LO
    Biotechnol Prog; 2002; 18(1):6-20. PubMed ID: 11822894
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Vitamin A Production by Engineered
    Sun L; Kwak S; Jin YS
    ACS Synth Biol; 2019 Sep; 8(9):2131-2140. PubMed ID: 31374167
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    Li Y; Mao J; Liu Q; Song X; Wu Y; Cai M; Xu H; Qiao M
    ACS Synth Biol; 2020 Apr; 9(4):756-765. PubMed ID: 32155331
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.