These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 35138824)

  • 61. Effect of controlled oxygen limitation on Candida shehatae physiology for ethanol production from xylose and glucose.
    Fromanger R; Guillouet SE; Uribelarrea JL; Molina-Jouve C; Cameleyre X
    J Ind Microbiol Biotechnol; 2010 May; 37(5):437-45. PubMed ID: 20066468
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Selection and application of novel high temperature inducible promoters in the tolerant yeast Candida glycerinogenes.
    Wang Y; Lin Y; Lu X; Zhuge B; Zong H
    J Biosci Bioeng; 2020 Jul; 130(1):1-5. PubMed ID: 32205048
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Two-stage transcriptional reprogramming in Saccharomyces cerevisiae for optimizing ethanol production from xylose.
    Cao L; Tang X; Zhang X; Zhang J; Tian X; Wang J; Xiong M; Xiao W
    Metab Eng; 2014 Jul; 24():150-9. PubMed ID: 24858789
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Cloning novel sugar transporters from Scheffersomyces (Pichia) stipitis allowing D-xylose fermentation by recombinant Saccharomyces cerevisiae.
    de Sales BB; Scheid B; Gonçalves DL; Knychala MM; Matsushika A; Bon EP; Stambuk BU
    Biotechnol Lett; 2015 Oct; 37(10):1973-82. PubMed ID: 26087949
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Enhanced D-lactic acid production from renewable resources using engineered Lactobacillus plantarum.
    Zhang Y; Vadlani PV; Kumar A; Hardwidge PR; Govind R; Tanaka T; Kondo A
    Appl Microbiol Biotechnol; 2016 Jan; 100(1):279-88. PubMed ID: 26433970
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Fermentation performance of Candida guilliermondii for xylitol production on single and mixed substrate media.
    Mussatto SI; Silva CJ; Roberto IC
    Appl Microbiol Biotechnol; 2006 Oct; 72(4):681-6. PubMed ID: 16541249
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Repeated-batch fermentations of xylose and glucose-xylose mixtures using a respiration-deficient Saccharomyces cerevisiae engineered for xylose metabolism.
    Kim SR; Lee KS; Choi JH; Ha SJ; Kweon DH; Seo JH; Jin YS
    J Biotechnol; 2010 Nov; 150(3):404-7. PubMed ID: 20933550
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Modular pathway engineering of key carbon-precursor supply-pathways for improved N-acetylneuraminic acid production in Bacillus subtilis.
    Zhang X; Liu Y; Liu L; Wang M; Li J; Du G; Chen J
    Biotechnol Bioeng; 2018 Sep; 115(9):2217-2231. PubMed ID: 29896807
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Improved p-hydroxybenzoate production by engineered Pseudomonas putida S12 by using a mixed-substrate feeding strategy.
    Meijnen JP; Verhoef S; Briedjlal AA; de Winde JH; Ruijssenaars HJ
    Appl Microbiol Biotechnol; 2011 May; 90(3):885-93. PubMed ID: 21287166
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Enhanced expression of genes involved in initial xylose metabolism and the oxidative pentose phosphate pathway in the improved xylose-utilizing Saccharomyces cerevisiae through evolutionary engineering.
    Zha J; Shen M; Hu M; Song H; Yuan Y
    J Ind Microbiol Biotechnol; 2014 Jan; 41(1):27-39. PubMed ID: 24113893
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Development and application of co-culture for ethanol production by co-fermentation of glucose and xylose: a systematic review.
    Chen Y
    J Ind Microbiol Biotechnol; 2011 May; 38(5):581-97. PubMed ID: 21104106
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Fermentation of glucose-xylose-arabinose mixtures by a synthetic consortium of single-sugar-fermenting Saccharomyces cerevisiae strains.
    Verhoeven MD; de Valk SC; Daran JG; van Maris AJA; Pronk JT
    FEMS Yeast Res; 2018 Dec; 18(8):. PubMed ID: 30010916
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Improving xylitol yield by deletion of endogenous xylitol-assimilating genes: a study of industrial Saccharomyces cerevisiae in fermentation of glucose and xylose.
    Yang BX; Xie CY; Xia ZY; Wu YJ; Gou M; Tang YQ
    FEMS Yeast Res; 2020 Dec; 20(8):. PubMed ID: 33201998
    [TBL] [Abstract][Full Text] [Related]  

  • 74. High-cell density culture of poly(lactate-co-3-hydroxybutyrate)-producing Escherichia coli by using glucose/xylose-switching fed-batch jar fermentation.
    Hori C; Yamazaki T; Ribordy G; Takisawa K; Matsumoto K; Ooi T; Zinn M; Taguchi S
    J Biosci Bioeng; 2019 Jun; 127(6):721-725. PubMed ID: 30573386
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae.
    Verho R; Londesborough J; Penttilä M; Richard P
    Appl Environ Microbiol; 2003 Oct; 69(10):5892-7. PubMed ID: 14532041
    [TBL] [Abstract][Full Text] [Related]  

  • 76. L-Lactic acid production from glucose and xylose with engineered strains of Saccharomyces cerevisiae: aeration and carbon source influence yields and productivities.
    Novy V; Brunner B; Nidetzky B
    Microb Cell Fact; 2018 Apr; 17(1):59. PubMed ID: 29642896
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Self-Buffering system for Cost-Effective production of lactic acid from glucose and xylose using Acid-Tolerant Issatchenkia orientalis.
    Lee YG; Kang NK; Kim C; Tran VG; Cao M; Yoshikuni Y; Zhao H; Jin YS
    Bioresour Technol; 2024 May; 399():130641. PubMed ID: 38552861
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Engineering nonphosphorylative metabolism to synthesize mesaconate from lignocellulosic sugars in Escherichia coli.
    Bai W; Tai YS; Wang J; Wang J; Jambunathan P; Fox KJ; Zhang K
    Metab Eng; 2016 Nov; 38():285-292. PubMed ID: 27697562
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Fermentation of xylose causes inefficient metabolic state due to carbon/energy starvation and reduced glycolytic flux in recombinant industrial Saccharomyces cerevisiae.
    Matsushika A; Nagashima A; Goshima T; Hoshino T
    PLoS One; 2013; 8(7):e69005. PubMed ID: 23874849
    [TBL] [Abstract][Full Text] [Related]  

  • 80. L-malic acid production from xylose by engineered Saccharomyces cerevisiae.
    Kang NK; Lee JW; Ort DR; Jin YS
    Biotechnol J; 2022 Mar; 17(3):e2000431. PubMed ID: 34390209
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.