These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 35138930)

  • 1. Establishing
    Humphreys JR; Hebdon SD; Rohrer H; Magnusson L; Urban C; Chen YP; Lo J
    Appl Environ Microbiol; 2022 Mar; 88(6):e0239321. PubMed ID: 35138930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-carbon catabolism in acetogens: analysis of carbon flow in Acetobacterium woodii and Butyribacterium methylotrophicum by fermentation and 13C nuclear magnetic resonance measurement.
    Kerby R; Niemczura W; Zeikus JG
    J Bacteriol; 1983 Sep; 155(3):1208-18. PubMed ID: 6411684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anaerobic catabolism of formate to acetate and CO2 by Butyribacterium methylotrophicum.
    Kerby R; Zeikus JG
    J Bacteriol; 1987 May; 169(5):2063-8. PubMed ID: 3106329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolism of H2-CO2, methanol, and glucose by Butyribacterium methylotrophicum.
    Lynd LH; Zeikus JG
    J Bacteriol; 1983 Mar; 153(3):1415-23. PubMed ID: 6402496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catabolic enzymes of the acetogen Butyribacterium methylotrophicum grown on single-carbon substrates.
    Kerby R; Zeikus JG
    J Bacteriol; 1987 Dec; 169(12):5605-9. PubMed ID: 3316188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Butyrate production in the acetogen Eubacterium limosum is dependent on the carbon and energy source.
    Litty D; Müller V
    Microb Biotechnol; 2021 Nov; 14(6):2686-2692. PubMed ID: 33629808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increasing lysine level improved methanol assimilation toward butyric acid production in Butyribacterium methylotrophicum.
    Wang J; Liao Y; Qin J; Ma C; Jin Y; Wang X; Chen K; Ouyang P
    Biotechnol Biofuels Bioprod; 2023 Jan; 16(1):10. PubMed ID: 36650609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High methanol-to-formate ratios induce butanol production in Eubacterium limosum.
    Wood JC; Marcellin E; Plan MR; Virdis B
    Microb Biotechnol; 2022 May; 15(5):1542-1549. PubMed ID: 34841673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosynthesis of butyrate from methanol and carbon monoxide by recombinant Acetobacterium woodii.
    Chowdhury NP; Litty D; Müller V
    Int Microbiol; 2022 Aug; 25(3):551-560. PubMed ID: 35179672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon monoxide metabolism of the methylotrophic acidogen Butyribacterium methylotrophicum.
    Lynd L; Kerby R; Zeikus JG
    J Bacteriol; 1982 Jan; 149(1):255-63. PubMed ID: 7033210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methanol bioconversion by Butyribacterium methylotrophicum--batch fermentation yield and kinetics.
    Datta R; Ogeltree J
    Biotechnol Bioeng; 1983 Apr; 25(4):991-8. PubMed ID: 18548714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clostridium scatologenes strain SL1 isolated as an acetogenic bacterium from acidic sediments.
    Küsel K; Dorsch T; Acker G; Stackebrandt E; Drake HL
    Int J Syst Evol Microbiol; 2000 Mar; 50 Pt 2():537-546. PubMed ID: 10758858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A quantitative metabolic analysis reveals Acetobacterium woodii as a flexible and robust host for formate-based bioproduction.
    Neuendorf CS; Vignolle GA; Derntl C; Tomin T; Novak K; Mach RL; Birner-Grünberger R; Pflügl S
    Metab Eng; 2021 Nov; 68():68-85. PubMed ID: 34537366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methanol and methyl group conversion in acetogenic bacteria: biochemistry, physiology and application.
    Kremp F; Müller V
    FEMS Microbiol Rev; 2021 Mar; 45(2):. PubMed ID: 32901799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome Sequence of the Acetogenic Bacterium Butyribacterium methylotrophicum DSM 3468T.
    Bengelsdorf FR; Poehlein A; Schiel-Bengelsdorf B; Daniel R; Dürre P
    Genome Announc; 2016 Dec; 4(6):. PubMed ID: 27908997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering Acetogenic Bacteria for Efficient One-Carbon Utilization.
    Lee H; Bae J; Jin S; Kang S; Cho BK
    Front Microbiol; 2022; 13():865168. PubMed ID: 35615514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into CO2 Fixation Pathway of Clostridium autoethanogenum by Targeted Mutagenesis.
    Liew F; Henstra AM; Winzer K; Köpke M; Simpson SD; Minton NP
    mBio; 2016 May; 7(3):. PubMed ID: 27222467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-carbon chemistry of acetogenic and methanogenic bacteria.
    Zeikus JG; Kerby R; Krzycki JA
    Science; 1985 Mar; 227(4691):1167-73. PubMed ID: 3919443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New Horizons in Acetogenic Conversion of One-Carbon Substrates and Biological Hydrogen Storage.
    Müller V
    Trends Biotechnol; 2019 Dec; 37(12):1344-1354. PubMed ID: 31257058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Product Diversity Linked to Substrate Usage in Chain Elongation by Mixed-Culture Fermentation.
    Coma M; Vilchez-Vargas R; Roume H; Jauregui R; Pieper DH; Rabaey K
    Environ Sci Technol; 2016 Jun; 50(12):6467-76. PubMed ID: 27162101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.