These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 35138930)

  • 21. Effect of ethanol and butanol on autotrophic growth of model homoacetogens.
    Ramió-Pujol S; Ganigué R; Bañeras L; Colprim J
    FEMS Microbiol Lett; 2018 May; 365(10):. PubMed ID: 29617997
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Formate-Dependent Acetogenic Utilization of Glucose by the Fecal Acetogen
    Yao Y; Fu B; Han D; Zhang Y; Liu H
    Appl Environ Microbiol; 2020 Nov; 86(23):. PubMed ID: 32948524
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genetic and metabolic engineering challenges of C1-gas fermenting acetogenic chassis organisms.
    Bourgade B; Minton NP; Islam MA
    FEMS Microbiol Rev; 2021 Mar; 45(2):. PubMed ID: 33595667
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Model-driven approach for the production of butyrate from CO
    Benito-Vaquerizo S; Nouse N; Schaap PJ; Hugenholtz J; Brul S; López-Contreras AM; Martins Dos Santos VAP; Suarez-Diez M
    Front Microbiol; 2022; 13():1064013. PubMed ID: 36620068
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Efficient butanol-ethanol (B-E) production from carbon monoxide fermentation by Clostridium carboxidivorans.
    Fernández-Naveira Á; Abubackar HN; Veiga MC; Kennes C
    Appl Microbiol Biotechnol; 2016 Apr; 100(7):3361-70. PubMed ID: 26810079
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthetic Biology on Acetogenic Bacteria for Highly Efficient Conversion of C1 Gases to Biochemicals.
    Jin S; Bae J; Song Y; Pearcy N; Shin J; Kang S; Minton NP; Soucaille P; Cho BK
    Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33076477
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Diverse Energy-Conserving Pathways in Clostridium difficile: Growth in the Absence of Amino Acid Stickland Acceptors and the Role of the Wood-Ljungdahl Pathway.
    Gencic S; Grahame DA
    J Bacteriol; 2020 Sep; 202(20):. PubMed ID: 32967909
    [No Abstract]   [Full Text] [Related]  

  • 28. Effect of surfactants on carbon monoxide fermentations by Butyribacterium methylotrophicum.
    Bredwell MD; Telgenhoff MD; Barnard S; Worden RM
    Appl Biochem Biotechnol; 1997; 63-65():637-47. PubMed ID: 18576119
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Leveraging substrate flexibility and product selectivity of acetogens in two-stage systems for chemical production.
    Ricci L; Seifert A; Bernacchi S; Fino D; Pirri CF; Re A
    Microb Biotechnol; 2023 Feb; 16(2):218-237. PubMed ID: 36464980
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Potential of Sequential Fermentations in Converting C1 Substrates to Higher-Value Products.
    Stark C; Münßinger S; Rosenau F; Eikmanns BJ; Schwentner A
    Front Microbiol; 2022; 13():907577. PubMed ID: 35722332
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii.
    Ueki T; Nevin KP; Woodard TL; Lovley DR
    mBio; 2014 Oct; 5(5):e01636-14. PubMed ID: 25336453
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genomic analysis of carbon monoxide utilization and butanol production by Clostridium carboxidivorans strain P7.
    Bruant G; Lévesque MJ; Peter C; Guiot SR; Masson L
    PLoS One; 2010 Sep; 5(9):e13033. PubMed ID: 20885952
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Clostridium cellulovorans metabolism of cellulose as studied by comparative proteomic approach.
    Usai G; Cirrincione S; Re A; Manfredi M; Pagnani A; Pessione E; Mazzoli R
    J Proteomics; 2020 Mar; 216():103667. PubMed ID: 31982546
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthetic Methanol and Formate Assimilation Via Modular Engineering and Selection Strategies.
    Claassens NJ; He H; Bar-Even A
    Curr Issues Mol Biol; 2019; 33():237-248. PubMed ID: 31166196
    [TBL] [Abstract][Full Text] [Related]  

  • 35. One substrate, many fates: different ways of methanol utilization in the acetogen Acetobacterium woodii.
    Litty D; Kremp F; Müller V
    Environ Microbiol; 2022 Jul; 24(7):3124-3133. PubMed ID: 35416389
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CO Metabolism in the Acetogen Acetobacterium woodii.
    Bertsch J; Müller V
    Appl Environ Microbiol; 2015 Sep; 81(17):5949-56. PubMed ID: 26092462
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Overcoming Energetic Barriers in Acetogenic C1 Conversion.
    Katsyv A; Müller V
    Front Bioeng Biotechnol; 2020; 8():621166. PubMed ID: 33425882
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional Expression of the Clostridium ljungdahlii Acetyl-Coenzyme A Synthase in Clostridium acetobutylicum as Demonstrated by a Novel
    Fast AG; Papoutsakis ET
    Appl Environ Microbiol; 2018 Apr; 84(7):. PubMed ID: 29374033
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Elimination of formate production in Clostridium thermocellum.
    Rydzak T; Lynd LR; Guss AM
    J Ind Microbiol Biotechnol; 2015 Sep; 42(9):1263-72. PubMed ID: 26162629
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Incomplete Wood-Ljungdahl pathway facilitates one-carbon metabolism in organohalide-respiring Dehalococcoides mccartyi.
    Zhuang WQ; Yi S; Bill M; Brisson VL; Feng X; Men Y; Conrad ME; Tang YJ; Alvarez-Cohen L
    Proc Natl Acad Sci U S A; 2014 Apr; 111(17):6419-24. PubMed ID: 24733917
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.