These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 3513894)

  • 21. Cholinergic markers in the cortex and hippocampus of some animal species and their correlation to Alzheimer's disease.
    Orta-Salazar E; Cuellar-Lemus CA; Díaz-Cintra S; Feria-Velasco AI
    Neurologia; 2014 Oct; 29(8):497-503. PubMed ID: 23433740
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Are there sequential morphometrical changes in the nucleus basalis in Alzheimer's disease?
    Kobayashi K; Miyazu K; Nakamura I; Fukutani Y; Yamaguchi N; Nakanishi I
    Eur Neurol; 1992; 32(1):58-64. PubMed ID: 1563457
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neurochemical studies of early-onset Alzheimer's disease. Possible influence on treatment.
    Francis PT; Palmer AM; Sims NR; Bowen DM; Davison AN; Esiri MM; Neary D; Snowden JS; Wilcock GK
    N Engl J Med; 1985 Jul; 313(1):7-11. PubMed ID: 2582256
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neuronal tetraploidization in the cerebral cortex correlates with reduced cognition in mice and precedes and recapitulates Alzheimer's-associated neuropathology.
    López-Sánchez N; Fontán-Lozano Á; Pallé A; González-Álvarez V; Rábano A; Trejo JL; Frade JM
    Neurobiol Aging; 2017 Aug; 56():50-66. PubMed ID: 28494436
    [TBL] [Abstract][Full Text] [Related]  

  • 25. RCAN1-1L is overexpressed in neurons of Alzheimer's disease patients.
    Harris CD; Ermak G; Davies KJ
    FEBS J; 2007 Apr; 274(7):1715-24. PubMed ID: 17331188
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cholinergic subcortical hyperintensities in Alzheimer's disease patients from the Sunnybrook Dementia Study: relationships with cognitive dysfunction and hippocampal atrophy.
    McNeely AA; Ramirez J; Nestor SM; Zhao J; Gao F; Kiss A; Stuss DT; Black SE
    J Alzheimers Dis; 2015; 43(3):785-96. PubMed ID: 25114078
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cholinergic axon length reduced by 300 meters in the brain of an Alzheimer mouse model.
    Nikolajsen GN; Jensen MS; West MJ
    Neurobiol Aging; 2011 Nov; 32(11):1927-31. PubMed ID: 21752495
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effects of chronic imipramine administration on rat brain levels of serotonin, 5-hydroxyindoleacetic acid, norepinephrine and dopamine.
    Alpers HS; Himwich HE
    J Pharmacol Exp Ther; 1972 Mar; 180(3):531-8. PubMed ID: 5012780
    [No Abstract]   [Full Text] [Related]  

  • 29. Hippocampal-sparing Alzheimer's disease presenting as corticobasal syndrome.
    Malkani RG; Dickson DW; Simuni T
    Parkinsonism Relat Disord; 2012 Jun; 18(5):683-5. PubMed ID: 22172552
    [No Abstract]   [Full Text] [Related]  

  • 30. Plasticity and neurotransmitter receptor changes in Alzheimer's disease and experimental cortical infarcts.
    Zilles K; Qü M; Schleicher A; Schroeter M; Kraemer M; Witte OW
    Arzneimittelforschung; 1995 Mar; 45(3A):361-6. PubMed ID: 7763327
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Should intracerebroventricular nerve growth factor be used to treat Alzheimer's disease?
    Saffran BN
    Perspect Biol Med; 1992; 35(4):471-86. PubMed ID: 1513678
    [No Abstract]   [Full Text] [Related]  

  • 32. Higher levels of different muscarinic receptors in the cortex and hippocampus from subjects with Alzheimer's disease.
    Scarr E; McLean C; Dean B
    J Neural Transm (Vienna); 2017 Mar; 124(3):273-284. PubMed ID: 27688247
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The site and nature of the primary lesions in Alzheimer's disease.
    Mann DM
    Prog Clin Biol Res; 1989; 317():303-11. PubMed ID: 2690105
    [No Abstract]   [Full Text] [Related]  

  • 34. [The entorhinal cortex (hippocampal formation) in aging and Alzheimer's disease. Neuroanatomical interpretation].
    Sobreviela T; Insausti A; Salinas A; Gonzalo LM; Insausti R
    Rev Med Univ Navarra; 1997; 41(1):19-27. PubMed ID: 9527711
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ablating ErbB4 in PV neurons attenuates synaptic and cognitive deficits in an animal model of Alzheimer's disease.
    Zhang H; Zhang L; Zhou D; He X; Wang D; Pan H; Zhang X; Mei Y; Qian Q; Zheng T; Jones FE; Sun B
    Neurobiol Dis; 2017 Oct; 106():171-180. PubMed ID: 28684271
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The cholinergic lesion of Alzheimer's disease: pivotal factor or side show?
    Mesulam M
    Learn Mem; 2004; 11(1):43-9. PubMed ID: 14747516
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Norepinephrine concentration in the hypothalamus, amygdala, hippocampus, and cerebral cortex during postnatal development and vaginal opening.
    Weiner RI; Ganong WF
    Neuroendocrinology; 1972; 9(2):65-71. PubMed ID: 5008876
    [No Abstract]   [Full Text] [Related]  

  • 38. Treatment strategy for the corticocortical neuron pathology of Alzheimer's disease.
    Bowen DM; Francis PT; Procter AW; Halliwell JV; Mann DM; Neary D
    Ann Neurol; 1992 Jul; 32(1):112. PubMed ID: 1642465
    [No Abstract]   [Full Text] [Related]  

  • 39. Sharing of specific antigens by degenerating neurons in Pick's disease and Alzheimer's disease.
    Rasool CG; Selkoe DJ
    N Engl J Med; 1985 Mar; 312(11):700-5. PubMed ID: 2579334
    [No Abstract]   [Full Text] [Related]  

  • 40. Serotonin nerve cells in Alzheimer's disease.
    Mann DM; Yates PO
    J Neurol Neurosurg Psychiatry; 1983 Jan; 46(1):96. PubMed ID: 6842210
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.