These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 35139023)
1. Identification of Phase Separating Proteins With Distributed Reduced Alphabet Representations of Sequences. Lahorkar A; Bhosale H; Sane A; Ramakrishnan V; Jayaraman VK IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):410-420. PubMed ID: 35139023 [TBL] [Abstract][Full Text] [Related]
2. Support vector machine-based prediction of pore-forming toxins (PFT) using distributed representation of reduced alphabets. Bhosale H; Ramakrishnan V; Jayaraman VK J Bioinform Comput Biol; 2021 Oct; 19(5):2150028. PubMed ID: 34693886 [TBL] [Abstract][Full Text] [Related]
3. A machine-learning approach for predicting palmitoylation sites from integrated sequence-based features. Li L; Luo Q; Xiao W; Li J; Zhou S; Li Y; Zheng X; Yang H J Bioinform Comput Biol; 2017 Feb; 15(1):1650025. PubMed ID: 27411307 [TBL] [Abstract][Full Text] [Related]
4. Protein-RNA interface residue prediction using machine learning: an assessment of the state of the art. Walia RR; Caragea C; Lewis BA; Towfic F; Terribilini M; El-Manzalawy Y; Dobbs D; Honavar V BMC Bioinformatics; 2012 May; 13():89. PubMed ID: 22574904 [TBL] [Abstract][Full Text] [Related]
5. Prediction of flexible/rigid regions from protein sequences using k-spaced amino acid pairs. Chen K; Kurgan LA; Ruan J BMC Struct Biol; 2007 Apr; 7():25. PubMed ID: 17437643 [TBL] [Abstract][Full Text] [Related]
6. Prediction of RNA-binding amino acids from protein and RNA sequences. Choi S; Han K BMC Bioinformatics; 2011; 12 Suppl 13(Suppl 13):S7. PubMed ID: 22373313 [TBL] [Abstract][Full Text] [Related]
7. IDM-PhyChm-Ens: intelligent decision-making ensemble methodology for classification of human breast cancer using physicochemical properties of amino acids. Ali S; Majid A; Khan A Amino Acids; 2014 Apr; 46(4):977-93. PubMed ID: 24390396 [TBL] [Abstract][Full Text] [Related]
8. DP-BINDER: machine learning model for prediction of DNA-binding proteins by fusing evolutionary and physicochemical information. Ali F; Ahmed S; Swati ZNK; Akbar S J Comput Aided Mol Des; 2019 Jul; 33(7):645-658. PubMed ID: 31123959 [TBL] [Abstract][Full Text] [Related]
9. Prediction of Protein Subcellular Localization Based on Fusion of Multi-view Features. Li B; Cai L; Liao B; Fu X; Bing P; Yang J Molecules; 2019 Mar; 24(5):. PubMed ID: 30845684 [TBL] [Abstract][Full Text] [Related]
10. DPP-PseAAC: A DNA-binding protein prediction model using Chou's general PseAAC. Rahman MS; Shatabda S; Saha S; Kaykobad M; Rahman MS J Theor Biol; 2018 Sep; 452():22-34. PubMed ID: 29753757 [TBL] [Abstract][Full Text] [Related]
11. KELM-CPPpred: Kernel Extreme Learning Machine Based Prediction Model for Cell-Penetrating Peptides. Pandey P; Patel V; George NV; Mallajosyula SS J Proteome Res; 2018 Sep; 17(9):3214-3222. PubMed ID: 30032609 [TBL] [Abstract][Full Text] [Related]
12. Prediction of protein structural class for low-similarity sequences using Chou's pseudo amino acid composition and wavelet denoising. Yu B; Lou L; Li S; Zhang Y; Qiu W; Wu X; Wang M; Tian B J Mol Graph Model; 2017 Sep; 76():260-273. PubMed ID: 28743071 [TBL] [Abstract][Full Text] [Related]
13. Identification and characterization of plastid-type proteins from sequence-attributed features using machine learning. Kaundal R; Sahu SS; Verma R; Weirick T BMC Bioinformatics; 2013; 14 Suppl 14(Suppl 14):S7. PubMed ID: 24266945 [TBL] [Abstract][Full Text] [Related]
14. Predicting HIV drug resistance using weighted machine learning method at target protein sequence-level. Cai Q; Yuan R; He J; Li M; Guo Y Mol Divers; 2021 Aug; 25(3):1541-1551. PubMed ID: 34241771 [TBL] [Abstract][Full Text] [Related]
15. SCPRED: accurate prediction of protein structural class for sequences of twilight-zone similarity with predicting sequences. Kurgan L; Cios K; Chen K BMC Bioinformatics; 2008 May; 9():226. PubMed ID: 18452616 [TBL] [Abstract][Full Text] [Related]
16. Predicting protein-protein interactions from primary protein sequences using a novel multi-scale local feature representation scheme and the random forest. You ZH; Chan KC; Hu P PLoS One; 2015; 10(5):e0125811. PubMed ID: 25946106 [TBL] [Abstract][Full Text] [Related]
17. RF-SVM: Identification of DNA-binding proteins based on comprehensive feature representation methods and support vector machine. Zhang Y; Ni J; Gao Y Proteins; 2022 Feb; 90(2):395-404. PubMed ID: 34455627 [TBL] [Abstract][Full Text] [Related]
18. Enhanced Protein Structural Class Prediction Using Effective Feature Modeling and Ensemble of Classifiers. Bankapur S; Patil N IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2409-2419. PubMed ID: 32149653 [TBL] [Abstract][Full Text] [Related]
19. Application of machine learning techniques for predicting survival in ovarian cancer. Sorayaie Azar A; Babaei Rikan S; Naemi A; Bagherzadeh Mohasefi J; Pirnejad H; Bagherzadeh Mohasefi M; Wiil UK BMC Med Inform Decis Mak; 2022 Dec; 22(1):345. PubMed ID: 36585641 [TBL] [Abstract][Full Text] [Related]
20. Prediction of virus-host infectious association by supervised learning methods. Zhang M; Yang L; Ren J; Ahlgren NA; Fuhrman JA; Sun F BMC Bioinformatics; 2017 Mar; 18(Suppl 3):60. PubMed ID: 28361670 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]