BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 35139255)

  • 21. New Red-Emitting Tetrazine-Phenoxazine Fluorogenic Labels for Live-Cell Intracellular Bioorthogonal Labeling Schemes.
    Knorr G; Kozma E; Herner A; Lemke EA; Kele P
    Chemistry; 2016 Jun; 22(26):8972-9. PubMed ID: 27218228
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Efficiency of Metabolic Labeling of DNA by Diels-Alder Reactions with Inverse Electron Demand: Correlation with the Size of Modified 2'-Deoxyuridines.
    Ganz D; Geng P; Wagenknecht HA
    ACS Chem Biol; 2023 May; 18(5):1054-1059. PubMed ID: 36921617
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cycloadditions for Studying Nucleic Acids.
    Kath-Schorr S
    Top Curr Chem (Cham); 2016 Feb; 374(1):4. PubMed ID: 27572987
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Green- to far-red-emitting fluorogenic tetrazine probes - synthetic access and no-wash protein imaging inside living cells.
    Wieczorek A; Werther P; Euchner J; Wombacher R
    Chem Sci; 2017 Feb; 8(2):1506-1510. PubMed ID: 28572909
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bioorthogonal micellar nanoreactors for prodrug cancer therapy using an inverse-electron-demand Diels-Alder reaction.
    Suehiro F; Fujii S; Nishimura T
    Chem Commun (Camb); 2022 Jun; 58(50):7026-7029. PubMed ID: 35642953
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Live-Cell Imaging of Sterculic Acid-a Naturally Occurring 1,2-Cyclopropene Fatty Acid-by Bioorthogonal Reaction with Turn-On Tetrazine-Fluorophore Conjugates.
    Bertheussen K; van de Plassche M; Bakkum T; Gagestein B; Ttofi I; Sarris AJC; Overkleeft HS; van der Stelt M; van Kasteren SI
    Angew Chem Int Ed Engl; 2022 Sep; 61(38):e202207640. PubMed ID: 35838324
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Selective Late-Stage Functionalization of Tryptophan-Containing Peptides To Facilitate Bioorthogonal Tetrazine Ligation.
    Mupparapu N; Syed B; Nguyen DN; Vo TH; Trujillo A; Elshahawi SI
    Org Lett; 2024 Mar; 26(12):2489-2494. PubMed ID: 38498918
    [TBL] [Abstract][Full Text] [Related]  

  • 28. IEDDA: An Attractive Bioorthogonal Reaction for Biomedical Applications.
    Handula M; Chen KT; Seimbille Y
    Molecules; 2021 Jul; 26(15):. PubMed ID: 34361793
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intracellular fluorogenic supramolecular assemblies for self-reporting bioorthogonal prodrug activation.
    Zhao Y; Yao Q; Chen J; Zhang R; Song J; Gao Y
    Biomater Sci; 2022 Sep; 10(19):5662-5668. PubMed ID: 35996984
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bioorthogonal Fluorescence Turn-On Labeling Based on Bicyclononyne-Tetrazine Cycloaddition Reactions that Form Pyridazine Products.
    Siegl SJ; Galeta J; Dzijak R; Dračínský M; Vrabel M
    Chempluschem; 2019 May; 84(5):493-497. PubMed ID: 31245251
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Amino acids with fluorescent tetrazine ethers as bioorthogonal handles for peptide modification.
    Ros E; Bellido M; Matarin JA; Gallen A; Martínez M; Rodríguez L; Verdaguer X; Ribas de Pouplana L; Riera A
    RSC Adv; 2022 May; 12(23):14321-14327. PubMed ID: 35702248
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Temporal Control of Efficient
    Yang B; Kwon K; Jana S; Kim S; Avila-Crump S; Tae G; Mehl RA; Kwon I
    Bioconjug Chem; 2020 Oct; 31(10):2456-2464. PubMed ID: 33034448
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Genetically Encoded Isonitrile Lysine for Orthogonal Bioorthogonal Labeling Schemes.
    Szatmári Á; Cserép GB; Molnár TÁ; Söveges B; Biró A; Várady G; Szabó E; Németh K; Kele P
    Molecules; 2021 Aug; 26(16):. PubMed ID: 34443576
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recent Advances in Targeting Nuclear Molecular Imaging Driven by Tetrazine Bioorthogonal Chemistry.
    Dong P; Wang X; Zheng J; Zhang X; Li Y; Wu H; Li L
    Curr Med Chem; 2020; 27(23):3924-3943. PubMed ID: 31267851
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inverse-electron demand Diels Alder Reactions between glycals and tetrazines.
    Marzabadi CH; Kelty SP; Altamura A
    Carbohydr Res; 2022 Sep; 519():108623. PubMed ID: 35738050
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 1,2,4-Triazine-Modified 2'-Deoxyuridine Triphosphate for Efficient Bioorthogonal Fluorescent Labeling of DNA.
    Peewasan K; Wagenknecht HA
    Chembiochem; 2017 Aug; 18(15):1473-1476. PubMed ID: 28485853
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Vinyluridine as a Versatile Chemoselective Handle for the Post-transcriptional Chemical Functionalization of RNA.
    George JT; Srivatsan SG
    Bioconjug Chem; 2017 May; 28(5):1529-1536. PubMed ID: 28406614
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Intercalation-enhanced "Click" Crosslinking of DNA.
    Tera M; Harati Taji Z; Luedtke NW
    Angew Chem Int Ed Engl; 2018 Nov; 57(47):15405-15409. PubMed ID: 30240107
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A TriPPPro-Nucleotide Reporter with Optimized Cell-Permeable Dyes for Metabolic Labeling of Cellular and Viral DNA in Living Cells.
    Sterrenberg VT; Stalling D; Knaack JIH; Soh TK; Bosse JB; Meier C
    Angew Chem Int Ed Engl; 2023 Sep; 62(38):e202308271. PubMed ID: 37435767
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Arylethynyltrifluoroborate Dienophiles for on Demand Activation of IEDDA Reactions.
    Zawada Z; Guo Z; Oliveira BL; Navo CD; Li H; Cal PMSD; Corzana F; Jiménez-Osés G; Bernardes GJL
    Bioconjug Chem; 2021 Aug; 32(8):1812-1822. PubMed ID: 34264651
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.