BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 35140289)

  • 1. Exendin-4 alleviates steatosis in an in vitro cell model by lowering FABP1 and FOXA1 expression via the Wnt/-catenin signaling pathway.
    Khalifa O; Al-Akl NS; Errafii K; Arredouani A
    Sci Rep; 2022 Feb; 12(1):2226. PubMed ID: 35140289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The human liver fatty acid binding protein (FABP1) gene is activated by FOXA1 and PPARα; and repressed by C/EBPα: Implications in FABP1 down-regulation in nonalcoholic fatty liver disease.
    Guzmán C; Benet M; Pisonero-Vaquero S; Moya M; García-Mediavilla MV; Martínez-Chantar ML; González-Gallego J; Castell JV; Sánchez-Campos S; Jover R
    Biochim Biophys Acta; 2013 Apr; 1831(4):803-18. PubMed ID: 23318274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tetrahydrocurcumin ameliorates free fatty acid-induced hepatic steatosis and improves insulin resistance in HepG2 cells.
    Chen JW; Kong ZL; Tsai ML; Lo CY; Ho CT; Lai CS
    J Food Drug Anal; 2018 Jul; 26(3):1075-1085. PubMed ID: 29976400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comprehensive analysis of LncRNAs expression profiles in an in vitro model of steatosis treated with Exendin-4.
    Errafii K; Al-Akl NS; Khalifa O; Arredouani A
    J Transl Med; 2021 Jun; 19(1):235. PubMed ID: 34078383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exendin-4 Inhibits Hepatic Lipogenesis by Increasing β-Catenin Signaling.
    Seo MH; Lee J; Hong SW; Rhee EJ; Park SE; Park CY; Oh KW; Park SW; Lee WY
    PLoS One; 2016; 11(12):e0166913. PubMed ID: 27907035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exendin-4, a glucagon-like peptide-1 receptor agonist, reduces hepatic steatosis and endoplasmic reticulum stress by inducing nuclear factor erythroid-derived 2-related factor 2 nuclear translocation.
    Yoo J; Cho IJ; Jeong IK; Ahn KJ; Chung HY; Hwang YC
    Toxicol Appl Pharmacol; 2018 Dec; 360():18-29. PubMed ID: 30253173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeted MicroRNA Profiling Reveals That Exendin-4 Modulates the Expression of Several MicroRNAs to Reduce Steatosis in HepG2 Cells.
    Khalifa O; Ouararhni K; Errafii K; Alajez NM; Arredouani A
    Int J Mol Sci; 2023 Jul; 24(14):. PubMed ID: 37511368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of exendin-4-induced steatosis by protein kinase A in cultured HepG2 human hepatoma cells.
    Chen-Liaw AY; Hammel G; Gomez G
    In Vitro Cell Dev Biol Anim; 2017 Sep; 53(8):721-727. PubMed ID: 28707223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. β-catenin mediates the effect of GLP-1 receptor agonist on ameliorating hepatic steatosis induced by high fructose diet.
    Gao Z; Song GY; Ren LP; Ma HJ; Ma BQ; Chen SC
    Eur J Histochem; 2020 Sep; 64(3):. PubMed ID: 32930541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of hepassocin in the development of non-alcoholic fatty liver disease.
    Wu HT; Lu FH; Ou HY; Su YC; Hung HC; Wu JS; Yang YC; Wu CL; Chang CJ
    J Hepatol; 2013 Nov; 59(5):1065-72. PubMed ID: 23792031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Swertiamarin ameliorates oleic acid induced lipid accumulation and oxidative stress by attenuating gluconeogenesis and lipogenesis in hepatic steatosis.
    Patel TP; Rawal K; Soni S; Gupta S
    Biomed Pharmacother; 2016 Oct; 83():785-791. PubMed ID: 27490779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dietary Polyphenols Protect Against Oleic Acid-Induced Steatosis in an in Vitro Model of NAFLD by Modulating Lipid Metabolism and Improving Mitochondrial Function.
    Rafiei H; Omidian K; Bandy B
    Nutrients; 2019 Mar; 11(3):. PubMed ID: 30832407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PPAR agonists reduce steatosis in oleic acid-overloaded HepaRG cells.
    Rogue A; Anthérieu S; Vluggens A; Umbdenstock T; Claude N; de la Moureyre-Spire C; Weaver RJ; Guillouzo A
    Toxicol Appl Pharmacol; 2014 Apr; 276(1):73-81. PubMed ID: 24534255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of ATP-binding cassette transporter A1 in suppressing lipid accumulation by glucagon-like peptide-1 agonist in hepatocytes.
    Lyu J; Imachi H; Fukunaga K; Sato S; Kobayashi T; Dong T; Saheki T; Matsumoto M; Iwama H; Zhang H; Murao K
    Mol Metab; 2020 Apr; 34():16-26. PubMed ID: 32180556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Foxa1 reduces lipid accumulation in human hepatocytes and is down-regulated in nonalcoholic fatty liver.
    Moya M; Benet M; Guzmán C; Tolosa L; García-Monzón C; Pareja E; Castell JV; Jover R
    PLoS One; 2012; 7(1):e30014. PubMed ID: 22238690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Puerarin ameliorates hepatic steatosis by activating the PPARα and AMPK signaling pathways in hepatocytes.
    Kang OH; Kim SB; Mun SH; Seo YS; Hwang HC; Lee YM; Lee HS; Kang DG; Kwon DY
    Int J Mol Med; 2015 Mar; 35(3):803-9. PubMed ID: 25605057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of free fatty acid receptor 1 improves hepatic steatosis through a p38-dependent pathway.
    Ou HY; Wu HT; Lu FH; Su YC; Hung HC; Wu JS; Yang YC; Wu CL; Chang CJ
    J Mol Endocrinol; 2014 Oct; 53(2):165-74. PubMed ID: 25008074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative Transcriptome Analysis Reveals That Exendin-4 Improves Steatosis in HepG2 Cells by Modulating Signaling Pathways Related to Lipid Metabolism.
    Errafii K; Khalifa O; Al-Akl NS; Arredouani A
    Biomedicines; 2022 Apr; 10(5):. PubMed ID: 35625757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peroxisome proliferator-activated receptor α activation induces hepatic steatosis, suggesting an adverse effect.
    Yan F; Wang Q; Xu C; Cao M; Zhou X; Wang T; Yu C; Jing F; Chen W; Gao L; Zhao J
    PLoS One; 2014; 9(6):e99245. PubMed ID: 24926685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wnt/β-catenin signaling activation promotes lipogenesis in the steatotic liver via physical mTOR interaction.
    Wang K; Zhang R; Lehwald N; Tao GZ; Liu B; Liu B; Koh Y; Sylvester KG
    Front Endocrinol (Lausanne); 2023; 14():1289004. PubMed ID: 38152126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.