These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 35140398)
1. A backbone-centred energy function of neural networks for protein design. Huang B; Xu Y; Hu X; Liu Y; Liao S; Zhang J; Huang C; Hong J; Chen Q; Liu H Nature; 2022 Feb; 602(7897):523-528. PubMed ID: 35140398 [TBL] [Abstract][Full Text] [Related]
2. De novo design of cavity-containing proteins with a backbone-centered neural network energy function. Xu Y; Hu X; Wang C; Liu Y; Chen Q; Liu H Structure; 2024 Apr; 32(4):424-432.e4. PubMed ID: 38325370 [TBL] [Abstract][Full Text] [Related]
3. Exploring binding positions and backbone conformations of peptide ligands of proteins with a backbone-centred statistical energy function. Zhang L; Liu H J Comput Aided Mol Des; 2023 Oct; 37(10):463-478. PubMed ID: 37498491 [TBL] [Abstract][Full Text] [Related]
4. Proteins of well-defined structures can be designed without backbone readjustment by a statistical model. Zhou X; Xiong P; Wang M; Ma R; Zhang J; Chen Q; Liu H J Struct Biol; 2016 Dec; 196(3):350-357. PubMed ID: 27522946 [TBL] [Abstract][Full Text] [Related]
5. Neural network-derived Potts models for structure-based protein design using backbone atomic coordinates and tertiary motifs. Li AJ; Lu M; Desta I; Sundar V; Grigoryan G; Keating AE Protein Sci; 2023 Feb; 32(2):e4554. PubMed ID: 36564857 [TBL] [Abstract][Full Text] [Related]
6. Emergence of highly designable protein-backbone conformations in an off-lattice model. Miller J; Zeng C; Wingreen NS; Tang C Proteins; 2002 Jun; 47(4):506-12. PubMed ID: 12001229 [TBL] [Abstract][Full Text] [Related]
7. Protein design with a machine-learned potential about backbone designability. Sun J; Wu B Trends Biochem Sci; 2022 Aug; 47(8):638-640. PubMed ID: 35466034 [TBL] [Abstract][Full Text] [Related]
8. Exploring "dark-matter" protein folds using deep learning. Harteveld Z; Van Hall-Beauvais A; Morozova I; Southern J; Goverde C; Georgeon S; Rosset S; Defferrard M; Loukas A; Vandergheynst P; Bronstein MM; Correia BE Cell Syst; 2024 Oct; 15(10):898-910.e5. PubMed ID: 39383860 [TBL] [Abstract][Full Text] [Related]
9. De novo backbone scaffolds for protein design. MacDonald JT; Maksimiak K; Sadowski MI; Taylor WR Proteins; 2010 Apr; 78(5):1311-25. PubMed ID: 20017215 [TBL] [Abstract][Full Text] [Related]
10. TetraBASE: A Side Chain-Independent Statistical Energy for Designing Realistically Packed Protein Backbones. Chu H; Liu H J Chem Inf Model; 2018 Feb; 58(2):430-442. PubMed ID: 29314837 [TBL] [Abstract][Full Text] [Related]
11. Computational Protein Design Under a Given Backbone Structure with the ABACUS Statistical Energy Function. Xiong P; Chen Q; Liu H Methods Mol Biol; 2017; 1529():217-226. PubMed ID: 27914053 [TBL] [Abstract][Full Text] [Related]
12. Computational design of a protein crystal. Lanci CJ; MacDermaid CM; Kang SG; Acharya R; North B; Yang X; Qiu XJ; DeGrado WF; Saven JG Proc Natl Acad Sci U S A; 2012 May; 109(19):7304-9. PubMed ID: 22538812 [TBL] [Abstract][Full Text] [Related]
13. Direct prediction of profiles of sequences compatible with a protein structure by neural networks with fragment-based local and energy-based nonlocal profiles. Li Z; Yang Y; Faraggi E; Zhan J; Zhou Y Proteins; 2014 Oct; 82(10):2565-73. PubMed ID: 24898915 [TBL] [Abstract][Full Text] [Related]
14. Energy minimization method using automata network for sequence and side-chain conformation prediction from given backbone geometry. Kono H; Doi J Proteins; 1994 Jul; 19(3):244-55. PubMed ID: 7937737 [TBL] [Abstract][Full Text] [Related]
15. A novel approach to prediction of the 3-dimensional structures of protein backbones by neural networks. Bohr H; Bohr J; Brunak S; Cotterill RM; Fredholm H; Lautrup B; Petersen SB FEBS Lett; 1990 Feb; 261(1):43-6. PubMed ID: 19928342 [TBL] [Abstract][Full Text] [Related]
16. High-resolution protein design with backbone freedom. Harbury PB; Plecs JJ; Tidor B; Alber T; Kim PS Science; 1998 Nov; 282(5393):1462-7. PubMed ID: 9822371 [TBL] [Abstract][Full Text] [Related]
17. De novo protein design by deep network hallucination. Anishchenko I; Pellock SJ; Chidyausiku TM; Ramelot TA; Ovchinnikov S; Hao J; Bafna K; Norn C; Kang A; Bera AK; DiMaio F; Carter L; Chow CM; Montelione GT; Baker D Nature; 2021 Dec; 600(7889):547-552. PubMed ID: 34853475 [TBL] [Abstract][Full Text] [Related]
18. Correlations between designability and various structural characteristics of protein lattice models. Yang JY; Yu ZG; Anh V J Chem Phys; 2007 May; 126(19):195101. PubMed ID: 17523837 [TBL] [Abstract][Full Text] [Related]
19. Computer-based design of novel protein structures. Butterfoss GL; Kuhlman B Annu Rev Biophys Biomol Struct; 2006; 35():49-65. PubMed ID: 16689627 [TBL] [Abstract][Full Text] [Related]
20. Thoroughly sampling sequence space: large-scale protein design of structural ensembles. Larson SM; England JL; Desjarlais JR; Pande VS Protein Sci; 2002 Dec; 11(12):2804-13. PubMed ID: 12441379 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]