These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

374 related articles for article (PubMed ID: 35141207)

  • 1. Integration of Machine Learning and Coarse-Grained Molecular Simulations for Polymer Materials: Physical Understandings and Molecular Design.
    Nguyen D; Tao L; Li Y
    Front Chem; 2021; 9():820417. PubMed ID: 35141207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeted sequence design within the coarse-grained polymer genome.
    Webb MA; Jackson NE; Gil PS; de Pablo JJ
    Sci Adv; 2020 Oct; 6(43):. PubMed ID: 33087352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A graph representation of molecular ensembles for polymer property prediction.
    Aldeghi M; Coley CW
    Chem Sci; 2022 Sep; 13(35):10486-10498. PubMed ID: 36277616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systematic coarse-graining of the dynamics of entangled polymer melts: the road from chemistry to rheology.
    Padding JT; Briels WJ
    J Phys Condens Matter; 2011 Jun; 23(23):233101. PubMed ID: 21613700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting Adhesive Free Energies of Polymer-Surface Interactions with Machine Learning.
    Shi J; Quevillon MJ; Amorim Valença PH; Whitmer JK
    ACS Appl Mater Interfaces; 2022 Aug; 14(32):37161-37169. PubMed ID: 35917495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A coarse-grained study on mechanical behaviors of diamond-like carbon based on machine learning.
    Xiong Z; Yu Y; Chen H; Bai L
    Nanotechnology; 2023 Jul; 34(38):. PubMed ID: 37410425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine-Learning-Assisted De Novo Design of Organic Molecules and Polymers: Opportunities and Challenges.
    Chen G; Shen Z; Iyer A; Ghumman UF; Tang S; Bi J; Chen W; Li Y
    Polymers (Basel); 2020 Jan; 12(1):. PubMed ID: 31936321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction potential for coarse-grained models of bottlebrush polymers.
    Pan T; Dutta S; Sing CE
    J Chem Phys; 2022 Jan; 156(1):014903. PubMed ID: 34998351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrating Machine Learning in the Coarse-Grained Molecular Simulation of Polymers.
    Ricci E; Vergadou N
    J Phys Chem B; 2023 Mar; 127(11):2302-2322. PubMed ID: 36888553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How the Dynamics of a Supramolecular Polymer Determines Its Dynamic Adaptivity and Stimuli-Responsiveness: Structure-Dynamics-Property Relationships From Coarse-Grained Simulations.
    Torchi A; Bochicchio D; Pavan GM
    J Phys Chem B; 2018 Apr; 122(14):4169-4178. PubMed ID: 29543455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient characterization of double-cross-linked networks in hydrogels using data-inspired coarse-grained molecular dynamics model.
    Zong T; Liu X; Zhang X; Yang Q
    J Chem Phys; 2024 Jan; 160(2):. PubMed ID: 38197443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. All-atom and coarse-grained molecular dynamics simulations of a membrane protein stabilizing polymer.
    Perlmutter JD; Drasler WJ; Xie W; Gao J; Popot JL; Sachs JN
    Langmuir; 2011 Sep; 27(17):10523-37. PubMed ID: 21806035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.
    Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G
    Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of Coarse-Grained Liquid-Crystal Polymer Model with Efficient Electrostatic Interaction: Toward Molecular Dynamics Simulations of Electroactive Materials.
    Tagashira K; Takahashi KZ; Fukuda JI; Aoyagi T
    Materials (Basel); 2018 Jan; 11(1):. PubMed ID: 29316621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mesoscale model of polymer melt structure: self-consistent mapping of molecular correlations to coarse-grained potentials.
    Ashbaugh HS; Patel HA; Kumar SK; Garde S
    J Chem Phys; 2005 Mar; 122(10):104908. PubMed ID: 15836359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From Cooperative Self-Assembly to Water-Soluble Supramolecular Polymers Using Coarse-Grained Simulations.
    Bochicchio D; Pavan GM
    ACS Nano; 2017 Jan; 11(1):1000-1011. PubMed ID: 27992720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Δ-Learning applied to coarse-grained homogeneous liquids.
    Khot A; Savoie BM
    J Chem Phys; 2023 Aug; 159(5):. PubMed ID: 37526160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perspectives on development of biomedical polymer materials in artificial intelligence age.
    Xie S
    J Biomater Appl; 2023 Mar; 37(8):1355-1375. PubMed ID: 36629787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The future of Cochrane Neonatal.
    Soll RF; Ovelman C; McGuire W
    Early Hum Dev; 2020 Nov; 150():105191. PubMed ID: 33036834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.