These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 35141737)
1. Genome editing of PD-L1 mediated by nucleobase-modified polyamidoamine for cancer immunotherapy. Wei S; Shao X; Liu Y; Xiong B; Cui P; Liu Z; Li Q J Mater Chem B; 2022 Feb; 10(8):1291-1300. PubMed ID: 35141737 [TBL] [Abstract][Full Text] [Related]
2. Programmed cell death ligand 1 disruption by clustered regularly interspaced short palindromic repeats/Cas9-genome editing promotes antitumor immunity and suppresses ovarian cancer progression. Yahata T; Mizoguchi M; Kimura A; Orimo T; Toujima S; Kuninaka Y; Nosaka M; Ishida Y; Sasaki I; Fukuda-Ohta Y; Hemmi H; Iwahashi N; Noguchi T; Kaisho T; Kondo T; Ino K Cancer Sci; 2019 Apr; 110(4):1279-1292. PubMed ID: 30702189 [TBL] [Abstract][Full Text] [Related]
3. Dual-Responsive Core-Shell Tecto Dendrimers Enable Efficient Gene Editing of Cancer Cells to Boost Immune Checkpoint Blockade Therapy. Liu J; Li G; Guo H; Ni C; Gao Y; Cao X; Xia J; Shi X; Guo R ACS Appl Mater Interfaces; 2023 Mar; 15(10):12809-12821. PubMed ID: 36853989 [TBL] [Abstract][Full Text] [Related]
4. Effect of CRISPR/Cas9-Edited PD-1/PD-L1 on Tumor Immunity and Immunotherapy. Xu Y; Chen C; Guo Y; Hu S; Sun Z Front Immunol; 2022; 13():848327. PubMed ID: 35300341 [TBL] [Abstract][Full Text] [Related]
5. Folate Receptor-Mediated Delivery of Cas9 RNP for Enhanced Immune Checkpoint Disruption in Cancer Cells. Lin Y; Wilk U; Pöhmerer J; Hörterer E; Höhn M; Luo X; Mai H; Wagner E; Lächelt U Small; 2023 Jan; 19(2):e2205318. PubMed ID: 36399647 [TBL] [Abstract][Full Text] [Related]
6. Aptamer/Peptide-Functionalized Genome-Editing System for Effective Immune Restoration through Reversal of PD-L1-Mediated Cancer Immunosuppression. He XY; Ren XH; Peng Y; Zhang JP; Ai SL; Liu BY; Xu C; Cheng SX Adv Mater; 2020 Apr; 32(17):e2000208. PubMed ID: 32147886 [TBL] [Abstract][Full Text] [Related]
7. Activation of the cGAS-STING pathway combined with CRISPR-Cas9 gene editing triggering long-term immunotherapy. Lu Q; Chen R; Du S; Chen C; Pan Y; Luan X; Yang J; Zeng F; He B; Han X; Song Y Biomaterials; 2022 Dec; 291():121871. PubMed ID: 36323073 [TBL] [Abstract][Full Text] [Related]
8. Recent progress, perspectives, and issues of engineered PD-L1 regulation nano-system to better cure tumor: A review. Zhou Z; Wang H; Li J; Jiang X; Li Z; Shen J Int J Biol Macromol; 2024 Jan; 254(Pt 2):127911. PubMed ID: 37939766 [TBL] [Abstract][Full Text] [Related]
9. Dual-Locking Nanoparticles Disrupt the PD-1/PD-L1 Pathway for Efficient Cancer Immunotherapy. Zhang Z; Wang Q; Liu Q; Zheng Y; Zheng C; Yi K; Zhao Y; Gu Y; Wang Y; Wang C; Zhao X; Shi L; Kang C; Liu Y Adv Mater; 2019 Dec; 31(51):e1905751. PubMed ID: 31709671 [TBL] [Abstract][Full Text] [Related]
10. Reprogramming the Tumor Microenvironment through Second-Near-Infrared-Window Photothermal Genome Editing of PD-L1 Mediated by Supramolecular Gold Nanorods for Enhanced Cancer Immunotherapy. Tang H; Xu X; Chen Y; Xin H; Wan T; Li B; Pan H; Li D; Ping Y Adv Mater; 2021 Mar; 33(12):e2006003. PubMed ID: 33538047 [TBL] [Abstract][Full Text] [Related]
11. Stearyl polyethylenimine complexed with plasmids as the core of human serum albumin nanoparticles noncovalently bound to CRISPR/Cas9 plasmids or siRNA for disrupting or silencing PD-L1 expression for immunotherapy. Cheng WJ; Chen LC; Ho HO; Lin HL; Sheu MT Int J Nanomedicine; 2018; 13():7079-7094. PubMed ID: 30464460 [TBL] [Abstract][Full Text] [Related]
12. Photo-Enhanced CRISPR/Cas9 System Enables Robust PD-L1 Gene Disruption in Cancer Cells and Cancer Stem-Like Cells for Efficient Cancer Immunotherapy. Zhao L; Luo Y; Huang Q; Cao Z; Yang X Small; 2020 Dec; ():e2004879. PubMed ID: 33289336 [TBL] [Abstract][Full Text] [Related]
13. A carrier-free multiplexed gene editing system applicable for suspension cells. Ju A; Lee SW; Lee YE; Han KC; Kim JC; Shin SC; Park HJ; EunKyeong Kim E; Hong S; Jang M Biomaterials; 2019 Oct; 217():119298. PubMed ID: 31280073 [TBL] [Abstract][Full Text] [Related]
14. Dual-sgRNA CRISPR/Cas9 knockout of PD-L1 in human U87 glioblastoma tumor cells inhibits proliferation, invasion, and tumor-associated macrophage polarization. Fierro J; DiPasquale J; Perez J; Chin B; Chokpapone Y; Tran AM; Holden A; Factoriza C; Sivagnanakumar N; Aguilar R; Mazal S; Lopez M; Dou H Sci Rep; 2022 Feb; 12(1):2417. PubMed ID: 35165339 [TBL] [Abstract][Full Text] [Related]
15. Efficient PD-L1 gene silence promoted by hyaluronidase for cancer immunotherapy. Guan X; Lin L; Chen J; Hu Y; Sun P; Tian H; Maruyama A; Chen X J Control Release; 2019 Jan; 293():104-112. PubMed ID: 30476528 [TBL] [Abstract][Full Text] [Related]
16. Programmable Unlocking Nano-Matryoshka-CRISPR Precisely Reverses Immunosuppression to Unleash Cascade Amplified Adaptive Immune Response. Yang J; Li Z; Shen M; Wang Y; Wang L; Li J; Yang W; Li J; Li H; Wang X; Wu Q; Gong C Adv Sci (Weinh); 2021 Jul; 8(13):2100292. PubMed ID: 34258164 [TBL] [Abstract][Full Text] [Related]
17. Ovarian cancer immunotherapy using PD-L1 siRNA targeted delivery from folic acid-functionalized polyethylenimine: strategies to enhance T cell killing. Teo PY; Yang C; Whilding LM; Parente-Pereira AC; Maher J; George AJ; Hedrick JL; Yang YY; Ghaem-Maghami S Adv Healthc Mater; 2015 Jun; 4(8):1180-9. PubMed ID: 25866054 [TBL] [Abstract][Full Text] [Related]
18. Immune checkpoint silencing using RNAi-incorporated nanoparticles enhances antitumor immunity and therapeutic efficacy compared with antibody-based approaches. Won JE; Byeon Y; Wi TI; Lee CM; Lee JH; Kang TH; Lee JW; Lee Y; Park YM; Han HD J Immunother Cancer; 2022 Feb; 10(2):. PubMed ID: 35228265 [TBL] [Abstract][Full Text] [Related]
19. Coadministration of iRGD peptide with ROS-sensitive nanoparticles co-delivering siFGL1 and siPD-L1 enhanced tumor immunotherapy. Wan WJ; Huang G; Wang Y; Tang Y; Li H; Jia CH; Liu Y; You BG; Zhang XN Acta Biomater; 2021 Dec; 136():473-484. PubMed ID: 34571271 [TBL] [Abstract][Full Text] [Related]
20. Disruption of SIRT7 Increases the Efficacy of Checkpoint Inhibitor via MEF2D Regulation of Programmed Cell Death 1 Ligand 1 in Hepatocellular Carcinoma Cells. Xiang J; Zhang N; Sun H; Su L; Zhang C; Xu H; Feng J; Wang M; Chen J; Liu L; Shan J; Shen J; Yang Z; Wang G; Zhou H; Prieto J; Ávila MA; Liu C; Qian C Gastroenterology; 2020 Feb; 158(3):664-678.e24. PubMed ID: 31678303 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]