These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 35141807)
1. Fast and Robust Exudate Detection in Retinal Fundus Images Using Extreme Learning Machine Autoencoders and Modified KAZE Features. Mohan NJ; Murugan R; Goel T; Roy P J Digit Imaging; 2022 Jun; 35(3):496-513. PubMed ID: 35141807 [TBL] [Abstract][Full Text] [Related]
2. A location-to-segmentation strategy for automatic exudate segmentation in colour retinal fundus images. Liu Q; Zou B; Chen J; Ke W; Yue K; Chen Z; Zhao G Comput Med Imaging Graph; 2017 Jan; 55():78-86. PubMed ID: 27665058 [TBL] [Abstract][Full Text] [Related]
3. Fundus images analysis using deep features for detection of exudates, hemorrhages and microaneurysms. Khojasteh P; Aliahmad B; Kumar DK BMC Ophthalmol; 2018 Nov; 18(1):288. PubMed ID: 30400869 [TBL] [Abstract][Full Text] [Related]
4. A comprehensive diagnosis system for early signs and different diabetic retinopathy grades using fundus retinal images based on pathological changes detection. AbdelMaksoud E; Barakat S; Elmogy M Comput Biol Med; 2020 Nov; 126():104039. PubMed ID: 33068807 [TBL] [Abstract][Full Text] [Related]
5. Exudate identification in retinal fundus images using precise textural verifications. Monemian M; Rabbani H Sci Rep; 2023 Feb; 13(1):2824. PubMed ID: 36808177 [TBL] [Abstract][Full Text] [Related]
6. Effective Fundus Image Decomposition for the Detection of Red Lesions and Hard Exudates to Aid in the Diagnosis of Diabetic Retinopathy. Romero-Oraá R; García M; Oraá-Pérez J; López-Gálvez MI; Hornero R Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33207825 [TBL] [Abstract][Full Text] [Related]
7. Automated Detection and Segmentation of Exudates for the Screening of Background Retinopathy. Kaur J; Mittal D; Malebary S; Nayak SR; Kumar D; Kumar M; Gagandeep ; Singh S J Healthc Eng; 2023; 2023():4537253. PubMed ID: 37483301 [TBL] [Abstract][Full Text] [Related]
8. Segmentation of retinal blood vessels by a novel hybrid technique- Principal Component Analysis (PCA) and Contrast Limited Adaptive Histogram Equalization (CLAHE). Sidhu RK; Sachdeva J; Katoch D Microvasc Res; 2023 Jul; 148():104477. PubMed ID: 36746364 [TBL] [Abstract][Full Text] [Related]
9. Hard exudates segmentation based on learned initial seeds and iterative graph cut. Kusakunniran W; Wu Q; Ritthipravat P; Zhang J Comput Methods Programs Biomed; 2018 May; 158():173-183. PubMed ID: 29544783 [TBL] [Abstract][Full Text] [Related]
10. Detection of Hard Exudates Using Evolutionary Feature Selection in Retinal Fundus Images. Kadan AB; Subbian PS J Med Syst; 2019 May; 43(7):209. PubMed ID: 31144041 [TBL] [Abstract][Full Text] [Related]
11. Automated classification of diabetic retinopathy through reliable feature selection. Gayathri S; Gopi VP; Palanisamy P Phys Eng Sci Med; 2020 Sep; 43(3):927-945. PubMed ID: 32648111 [TBL] [Abstract][Full Text] [Related]
12. Automatic Detection of Hard Exudates in Color Retinal Images Using Dynamic Threshold and SVM Classification: Algorithm Development and Evaluation. Long S; Huang X; Chen Z; Pardhan S; Zheng D Biomed Res Int; 2019; 2019():3926930. PubMed ID: 30809539 [TBL] [Abstract][Full Text] [Related]
13. Hemorrhage Detection Based on 3D CNN Deep Learning Framework and Feature Fusion for Evaluating Retinal Abnormality in Diabetic Patients. Maqsood S; Damaševičius R; Maskeliūnas R Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34205120 [TBL] [Abstract][Full Text] [Related]
14. Retinal images benchmark for the detection of diabetic retinopathy and clinically significant macular edema (CSME). Noor-Ul-Huda M; Tehsin S; Ahmed S; Niazi FAK; Murtaza Z Biomed Tech (Berl); 2019 May; 64(3):297-307. PubMed ID: 30055096 [TBL] [Abstract][Full Text] [Related]
15. Deep CNN with Hybrid Binary Local Search and Particle Swarm Optimizer for Exudates Classification from Fundus Images. Ramya J; Rajakumar MP; Maheswari BU J Digit Imaging; 2022 Feb; 35(1):56-67. PubMed ID: 34997375 [TBL] [Abstract][Full Text] [Related]
16. Combining transfer learning with retinal lesion features for accurate detection of diabetic retinopathy. Hassan D; Gill HM; Happe M; Bhatwadekar AD; Hajrasouliha AR; Janga SC Front Med (Lausanne); 2022; 9():1050436. PubMed ID: 36425113 [TBL] [Abstract][Full Text] [Related]
17. Hard exudate detection based on deep model learned information and multi-feature joint representation for diabetic retinopathy screening. Wang H; Yuan G; Zhao X; Peng L; Wang Z; He Y; Qu C; Peng Z Comput Methods Programs Biomed; 2020 Jul; 191():105398. PubMed ID: 32092614 [TBL] [Abstract][Full Text] [Related]
18. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. Gulshan V; Peng L; Coram M; Stumpe MC; Wu D; Narayanaswamy A; Venugopalan S; Widner K; Madams T; Cuadros J; Kim R; Raman R; Nelson PC; Mega JL; Webster DR JAMA; 2016 Dec; 316(22):2402-2410. PubMed ID: 27898976 [TBL] [Abstract][Full Text] [Related]
19. Detection of Hard Exudates in Colour Fundus Images Using Fuzzy Support Vector Machine-Based Expert System. Jaya T; Dheeba J; Singh NA J Digit Imaging; 2015 Dec; 28(6):761-8. PubMed ID: 25822397 [TBL] [Abstract][Full Text] [Related]
20. Exudate detection in color retinal images for mass screening of diabetic retinopathy. Zhang X; Thibault G; Decencière E; Marcotegui B; Laÿ B; Danno R; Cazuguel G; Quellec G; Lamard M; Massin P; Chabouis A; Victor Z; Erginay A Med Image Anal; 2014 Oct; 18(7):1026-43. PubMed ID: 24972380 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]