BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 35141960)

  • 1. GrpE is involved in mitochondrial function and is an effective target for RNAi-mediated pest and arbovirus control.
    Huo Y; Song Z; Wang H; Zhang Z; Xiao N; Fang R; Zhang Y; Zhang L
    Insect Mol Biol; 2022 Jun; 31(3):377-390. PubMed ID: 35141960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The small brown planthopper (Laodelphax striatellus) as a vector of the rice stripe virus.
    Kil EJ; Kim D
    Arch Insect Biochem Physiol; 2023 Feb; 112(2):e21992. PubMed ID: 36575628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Massively parallel pyrosequencing-based transcriptome analyses of small brown planthopper (Laodelphax striatellus), a vector insect transmitting rice stripe virus (RSV).
    Zhang F; Guo H; Zheng H; Zhou T; Zhou Y; Wang S; Fang R; Qian W; Chen X
    BMC Genomics; 2010 May; 11():303. PubMed ID: 20462456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laodelphax striatellus saliva mucin enables the formation of stylet sheathes to facilitate its feeding and rice stripe virus transmission.
    Huo Y; Zhao J; Meng X; Yang J; Zhang Z; Liu Z; Fang R; Zhang L
    Pest Manag Sci; 2022 Aug; 78(8):3498-3507. PubMed ID: 35604851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Population diversity of rice stripe virus-derived siRNAs in three different hosts and RNAi-based antiviral immunity in Laodelphgax striatellus.
    Xu Y; Huang L; Fu S; Wu J; Zhou X
    PLoS One; 2012; 7(9):e46238. PubMed ID: 23029445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative Transcriptome Analysis of Chemoreception Organs of
    Li Y; Zhang Y; Xiang Y; Chen D; Hu J; Liu F
    Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of RNA Interference Pathways in the Insect Vector
    Xiao Y; Li Q; Wang W; Fu Y; Cui F
    Viruses; 2021 Aug; 13(8):. PubMed ID: 34452456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A functional study of two dsRNA binding protein genes in Laodelphax striatellus.
    Lu DH; Wu M; Pu J; Feng A; Zhang Q; Han ZJ
    Pest Manag Sci; 2013 Sep; 69(9):1034-9. PubMed ID: 23828787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The α-tubulin of Laodelphax striatellus mediates the passage of rice stripe virus (RSV) and enhances horizontal transmission.
    Li Y; Chen D; Hu J; Zhang K; Kang L; Chen Y; Huang L; Zhang L; Xiang Y; Song Q; Liu F
    PLoS Pathog; 2020 Aug; 16(8):e1008710. PubMed ID: 32817722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laodelphax striatellus Atg8 facilitates Rice stripe virus infection in an autophagy-independent manner.
    Yu YL; Zhang MT; Huo Y; Tang JL; Liu Q; Chen XY; Fang RX; Zhang LL
    Insect Sci; 2021 Apr; 28(2):315-329. PubMed ID: 32108430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative analysis of Rice stripe virus in a transovarial transmission cycle during the development and reproduction of its vector, Laodelphax striatellus.
    Okuda M; Shiba T; Hirae M
    Virus Genes; 2017 Dec; 53(6):898-905. PubMed ID: 28589385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silencing suppressors of rice black-streaked dwarf virus and rice stripe virus hijack the 26S proteasome of Laodelphax striatellus to facilitate virus accumulation and transmission.
    Li Y; Zhu L; Gao J; Ma H; Li C; Song Y; Zhu X; Zhu C
    Pest Manag Sci; 2022 Jul; 78(7):2940-2951. PubMed ID: 35439336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artificial feeding Rice stripe virus enables efficient virus infection of Laodelphax striatellus.
    Huo Y; Chen L; Su L; Wu Y; Chen X; Fang R; Zhang L
    J Virol Methods; 2016 Sep; 235():139-143. PubMed ID: 27283882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Halloween gene shadow is a potential target for RNA-interference-based pest management in the small brown planthopper Laodelphax striatellus.
    Wan PJ; Jia S; Li N; Fan JM; Li GQ
    Pest Manag Sci; 2015 Feb; 71(2):199-206. PubMed ID: 24648012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Knockdown of midgut genes by dsRNA-transgenic plant-mediated RNA interference in the hemipteran insect Nilaparvata lugens.
    Zha W; Peng X; Chen R; Du B; Zhu L; He G
    PLoS One; 2011; 6(5):e20504. PubMed ID: 21655219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Voltage-dependent anion channel 2 (VDAC2) facilitates the accumulation of rice stripe virus in the vector Laodelphax striatellus.
    Zhang L; Li L; Huang L; Li X; Xu C; Hu W; Sun Y; Liu F; Li Y
    Virus Res; 2023 Jan; 324():199019. PubMed ID: 36496034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteomic Analysis of Interaction between a Plant Virus and Its Vector Insect Reveals New Functions of Hemipteran Cuticular Protein.
    Liu W; Gray S; Huo Y; Li L; Wei T; Wang X
    Mol Cell Proteomics; 2015 Aug; 14(8):2229-42. PubMed ID: 26091699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alternative Splicing Landscape of Small Brown Planthopper and Different Response of JNK2 Isoforms to Rice Stripe Virus Infection.
    Tong L; Chen X; Wang W; Xiao Y; Yu J; Lu H; Cui F
    J Virol; 2022 Jan; 96(2):e0171521. PubMed ID: 34757837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomic analysis of Laodelphax striatellus in response to Rice stripe virus infection reveal a potential role of ZFP36L1 in restriction of viral proliferation.
    Huang HJ; Yan XT; Wang X; Qi YH; Lu G; Chen JP; Zhang CX; Li JM
    J Proteomics; 2021 May; 239():104184. PubMed ID: 33711487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rice stripe virus hitchhikes the vector insect vitellogenin ligand-receptor pathway for ovary entry.
    Huo Y; Yu Y; Liu Q; Liu D; Zhang M; Liang J; Chen X; Zhang L; Fang R
    Philos Trans R Soc Lond B Biol Sci; 2019 Mar; 374(1767):20180312. PubMed ID: 30967014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.