These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 3514216)
21. Proteolytic specificity of moojeni protease A isolated from the venom of Bothrops moojeni. Reichl AP; Mandelbaum FR Toxicon; 1993 Feb; 31(2):187-94. PubMed ID: 8456446 [TBL] [Abstract][Full Text] [Related]
22. Active site mapping of the serine proteases human leukocyte elastase, cathepsin G, porcine pancreatic elastase, rat mast cell proteases I and II. Bovine chymotrypsin A alpha, and Staphylococcus aureus protease V-8 using tripeptide thiobenzyl ester substrates. Harper JW; Cook RR; Roberts CJ; McLaughlin BJ; Powers JC Biochemistry; 1984 Jun; 23(13):2995-3002. PubMed ID: 6380580 [TBL] [Abstract][Full Text] [Related]
23. A protease in the venom of king cobra (Ophiophagus hannah): purification, characterization and substrate specificity on oxidized insulin B-chain. Yamakawa Y; Omori-Satoh T Toxicon; 1988; 26(12):1145-55. PubMed ID: 3070833 [TBL] [Abstract][Full Text] [Related]
24. Purification properties and specificity of cathepsin D from Cyprinus carpio. Goldman-Levkovitz S; Rimon A; Rimon S Comp Biochem Physiol B Biochem Mol Biol; 1995 Sep; 112(1):147-51. PubMed ID: 7584842 [TBL] [Abstract][Full Text] [Related]
25. Inhibition of the proteolytic activity of hemorrhagin-e from Crotalus atrox venom by antihemorrhagins from homologous serum. Weissenberg S; Ovadia M; Kochva E Toxicon; 1992; 30(5-6):591-7. PubMed ID: 1519250 [TBL] [Abstract][Full Text] [Related]
26. Primary structures of platelet aggregation inhibitors (disintegrins) autoproteolytically released from snake venom hemorrhagic metalloproteinases and new fluorogenic peptide substrates for these enzymes. Takeya H; Nishida S; Nishino N; Makinose Y; Omori-Satoh T; Nikai T; Sugihara H; Iwanaga S J Biochem; 1993 Apr; 113(4):473-83. PubMed ID: 8514736 [TBL] [Abstract][Full Text] [Related]
27. [p-Nitroanilides of amino acids and peptides and fluorescence peptide with inner fluorescence quenching as substrates for cathepsins H, B, D and high molecular weight aspartic peptidase in the brain]. Azarian AV; Agatian GL; Galoian AA Biokhimiia; 1987 Dec; 52(12):2033-7. PubMed ID: 3328984 [TBL] [Abstract][Full Text] [Related]
28. Evidence for the presence of five distinct proteolytic components in the pituitary multicatalytic proteinase complex. Properties of two components cleaving bonds on the carboxyl side of branched chain and small neutral amino acids. Orlowski M; Cardozo C; Michaud C Biochemistry; 1993 Feb; 32(6):1563-72. PubMed ID: 8431436 [TBL] [Abstract][Full Text] [Related]
29. Design and characterization of a fluorogenic substrate selectively hydrolyzed by stromelysin 1 (matrix metalloproteinase-3). Nagase H; Fields CG; Fields GB J Biol Chem; 1994 Aug; 269(33):20952-7. PubMed ID: 8063713 [TBL] [Abstract][Full Text] [Related]
30. Fluorescent oligopeptide substrates for kinetic characterization of the specificity of Astacus protease. Stöcker W; Ng M; Auld DS Biochemistry; 1990 Nov; 29(45):10418-25. PubMed ID: 2261483 [TBL] [Abstract][Full Text] [Related]
31. Proteolytic specificity of hemorrhagic toxin b from Crotalus atrox (western diamondback rattlesnake) venom. Hagihara S; Komori Y; Tu AT Comp Biochem Physiol C Comp Pharmacol Toxicol; 1985; 82(1):21-7. PubMed ID: 2865065 [TBL] [Abstract][Full Text] [Related]
32. X-ray structures of human neutrophil collagenase complexed with peptide hydroxamate and peptide thiol inhibitors. Implications for substrate binding and rational drug design. Grams F; Reinemer P; Powers JC; Kleine T; Pieper M; Tschesche H; Huber R; Bode W Eur J Biochem; 1995 Mar; 228(3):830-41. PubMed ID: 7737183 [TBL] [Abstract][Full Text] [Related]
33. Effects of secondary interactions on the kinetics of peptide and peptide ester hydrolysis by tissue kallikrein and trypsin. Fiedler F Eur J Biochem; 1987 Mar; 163(2):303-12. PubMed ID: 3643848 [TBL] [Abstract][Full Text] [Related]
36. Specificities of extracellular and ribosomal serine proteinases from Bacillus natto, a food microorganism. Ichishima E; Takada Y; Taira K; Takeuchi M Biochim Biophys Acta; 1986 Jan; 869(2):178-84. PubMed ID: 3510665 [TBL] [Abstract][Full Text] [Related]
37. Purification and some properties of two proteinases from Crotalus adamanteus venom that inactivate human alpha 1-proteinase inhibitor. Kurecki T; Laskowski M; Kress LF J Biol Chem; 1978 Nov; 253(22):8340-5. PubMed ID: 309470 [TBL] [Abstract][Full Text] [Related]
38. Interdomain hydrolysis of a truncated Pseudomonas exotoxin by the human immunodeficiency virus-1 protease. Tomasselli AG; Hui JO; Sawyer TK; Staples DJ; FitzGerald DJ; Chaudhary VK; Pastan I; Heinrikson RL J Biol Chem; 1990 Jan; 265(1):408-13. PubMed ID: 2104621 [TBL] [Abstract][Full Text] [Related]
39. The catalytic activity of pig pepsin C towards small synthetic substrates. Auffret CA; Ryle AP Biochem J; 1979 Apr; 179(1):239-46. PubMed ID: 38772 [TBL] [Abstract][Full Text] [Related]
40. Purification, substrate specificity, and classification of tripeptidyl peptidase II. Bålöw RM; Tomkinson B; Ragnarsson U; Zetterqvist O J Biol Chem; 1986 Feb; 261(5):2409-17. PubMed ID: 3511062 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]