BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 35142207)

  • 1. Free Energy Decomposition Analysis Based on the Fragment Molecular Orbital Method.
    Fedorov DG; Nakamura T
    J Phys Chem Lett; 2022 Feb; 13(6):1596-1601. PubMed ID: 35142207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fragment Molecular Orbital method-based Molecular Dynamics (FMO-MD) as a simulator for chemical reactions in explicit solvation.
    Komeiji Y; Ishikawa T; Mochizuki Y; Yamataka H; Nakano T
    J Comput Chem; 2009 Jan; 30(1):40-50. PubMed ID: 18504778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fragment Molecular Orbital Molecular Dynamics with the Fully Analytic Energy Gradient.
    Brorsen KR; Minezawa N; Xu F; Windus TL; Gordon MS
    J Chem Theory Comput; 2012 Dec; 8(12):5008-12. PubMed ID: 26593192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large-Scale Quantum-Mechanical Molecular Dynamics Simulations Using Density-Functional Tight-Binding Combined with the Fragment Molecular Orbital Method.
    Nishimoto Y; Nakata H; Fedorov DG; Irle S
    J Phys Chem Lett; 2015 Dec; 6(24):5034-9. PubMed ID: 26623658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of solute-solvent interactions in the fragment molecular orbital method interfaced with effective fragment potentials: theory and application to a solvated griffithsin-carbohydrate complex.
    Nagata T; Fedorov DG; Sawada T; Kitaura K
    J Phys Chem A; 2012 Sep; 116(36):9088-99. PubMed ID: 22894829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analyzing Interactions with the Fragment Molecular Orbital Method.
    Fedorov DG
    Methods Mol Biol; 2020; 2114():49-73. PubMed ID: 32016886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The fragment molecular orbital method combined with density-functional tight-binding and periodic boundary conditions.
    Nishimoto Y; Fedorov DG
    J Chem Phys; 2021 Mar; 154(11):111102. PubMed ID: 33752370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pair Interaction Energy Decomposition Analysis for Density Functional Theory and Density-Functional Tight-Binding with an Evaluation of Energy Fluctuations in Molecular Dynamics.
    Fedorov DG; Kitaura K
    J Phys Chem A; 2018 Feb; 122(6):1781-1795. PubMed ID: 29337557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Communication: variational many-body expansion: accounting for exchange repulsion, charge delocalization, and dispersion in the fragment-based explicit polarization method.
    Gao J; Wang Y
    J Chem Phys; 2012 Feb; 136(7):071101. PubMed ID: 22360228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive frozen orbital treatment for the fragment molecular orbital method combined with density-functional tight-binding.
    Nishimoto Y; Fedorov DG
    J Chem Phys; 2018 Feb; 148(6):064115. PubMed ID: 29448787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The polarizable continuum model (PCM) interfaced with the fragment molecular orbital method (FMO).
    Fedorov DG; Kitaura K; Li H; Jensen JH; Gordon MS
    J Comput Chem; 2006 Jun; 27(8):976-85. PubMed ID: 16604514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FMO-MD simulations on the hydration of formaldehyde in water solution with constraint dynamics.
    Sato M; Yamataka H; Komeiji Y; Mochizuki Y
    Chemistry; 2012 Jul; 18(31):9714-21. PubMed ID: 22815219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analytic second derivative of the energy for density functional theory based on the three-body fragment molecular orbital method.
    Nakata H; Fedorov DG; Zahariev F; Schmidt MW; Kitaura K; Gordon MS; Nakamura S
    J Chem Phys; 2015 Mar; 142(12):124101. PubMed ID: 25833559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined QM/MM Molecular Dynamics Study on a Condensed-Phase SN2 Reaction at Nitrogen:  The Effect of Explicitly Including Solvent Polarization.
    Geerke DP; Thiel S; Thiel W; van Gunsteren WF
    J Chem Theory Comput; 2007 Jul; 3(4):1499-509. PubMed ID: 26633221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The fragment molecular orbital method combined with density-functional tight-binding and the polarizable continuum model.
    Nishimoto Y; Fedorov DG
    Phys Chem Chem Phys; 2016 Aug; 18(32):22047-61. PubMed ID: 27215663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient and accurate fragmentation methods.
    Pruitt SR; Bertoni C; Brorsen KR; Gordon MS
    Acc Chem Res; 2014 Sep; 47(9):2786-94. PubMed ID: 24810424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Density-Functional Tight-Binding Combined with the Fragment Molecular Orbital Method.
    Nishimoto Y; Fedorov DG; Irle S
    J Chem Theory Comput; 2014 Nov; 10(11):4801-12. PubMed ID: 26584367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Taking Water into Account with the Fragment Molecular Orbital Method.
    Okiyama Y; Fukuzawa K; Komeiji Y; Tanaka S
    Methods Mol Biol; 2020; 2114():105-122. PubMed ID: 32016889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions between phosphate and water in solution: a natural bond orbital based analysis in a QM/MM framework.
    Yang Y; Cui Q
    J Phys Chem B; 2007 Apr; 111(16):3999-4002. PubMed ID: 17391023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-body expansion of the fragment molecular orbital method combined with density-functional tight-binding.
    Nishimoto Y; Fedorov DG
    J Comput Chem; 2017 Mar; 38(7):406-418. PubMed ID: 28114730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.