These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 35142207)

  • 21. Extending the power of quantum chemistry to large systems with the fragment molecular orbital method.
    Fedorov DG; Kitaura K
    J Phys Chem A; 2007 Aug; 111(30):6904-14. PubMed ID: 17511437
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Coarse-grained time-dependent density functional simulation of charge transfer in complex systems: application to hole transfer in DNA.
    Kubar T; Elstner M
    J Phys Chem B; 2010 Sep; 114(34):11221-40. PubMed ID: 20687528
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analytic second derivative of the energy for density-functional tight-binding combined with the fragment molecular orbital method.
    Nakata H; Nishimoto Y; Fedorov DG
    J Chem Phys; 2016 Jul; 145(4):044113. PubMed ID: 27475354
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Accurate Scoring in Seconds with the Fragment Molecular Orbital and Density-Functional Tight-Binding Methods.
    Morao I; Heifetz A; Fedorov DG
    Methods Mol Biol; 2020; 2114():143-148. PubMed ID: 32016891
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Fragment Molecular Orbital Method Based on Long-Range Corrected Density-Functional Tight-Binding.
    Vuong VQ; Nishimoto Y; Fedorov DG; Sumpter BG; Niehaus TA; Irle S
    J Chem Theory Comput; 2019 May; 15(5):3008-3020. PubMed ID: 30998360
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exactly Fragment Additive Breakdown of Polarization for Energy Decomposition Analysis Based on the Self-Consistent Field for Molecular Interactions.
    Shen H; Veccham SP; Head-Gordon M
    J Chem Theory Comput; 2023 Dec; 19(23):8624-8638. PubMed ID: 38084082
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A combined effective fragment potential-fragment molecular orbital method. I. The energy expression and initial applications.
    Nagata T; Fedorov DG; Kitaura K; Gordon MS
    J Chem Phys; 2009 Jul; 131(2):024101. PubMed ID: 19603964
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Importance of Polarization and Charge Transfer Effects to Model the Infrared Spectra of Peptides in Solution.
    Ingrosso F; Monard G; Hamdi Farag M; Bastida A; Ruiz-López MF
    J Chem Theory Comput; 2011 Jun; 7(6):1840-9. PubMed ID: 26596445
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Examination of the hydrogen-bonding networks in small water clusters (n = 2-5, 13, 17) using absolutely localized molecular orbital energy decomposition analysis.
    Cobar EA; Horn PR; Bergman RG; Head-Gordon M
    Phys Chem Chem Phys; 2012 Nov; 14(44):15328-39. PubMed ID: 23052011
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An improvement in quantum mechanical description of solute-solvent interactions in condensed systems via the number-adaptive multiscale quantum mechanical/molecular mechanical-molecular dynamics method: application to zwitterionic glycine in aqueous solution.
    Takenaka N; Kitamura Y; Koyano Y; Nagaoka M
    J Chem Phys; 2012 Jul; 137(2):024501. PubMed ID: 22803541
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of Guest Adsorption on Crystal Surfaces Based on the Fragment Molecular Orbital Method.
    Nakamura T; Yokaichiya T; Fedorov DG
    J Phys Chem A; 2022 Feb; 126(6):957-969. PubMed ID: 35080391
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The use of many-body expansions and geometry optimizations in fragment-based methods.
    Fedorov DG; Asada N; Nakanishi I; Kitaura K
    Acc Chem Res; 2014 Sep; 47(9):2846-56. PubMed ID: 25144610
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Solvent Organization and Rate Regulation of a Menshutkin Reaction by Oriented External Electric Fields are Revealed by Combined MD and QM/MM Calculations.
    Dutta Dubey K; Stuyver T; Kalita S; Shaik S
    J Am Chem Soc; 2020 Jun; 142(22):9955-9965. PubMed ID: 32369357
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Unrestricted density functional theory based on the fragment molecular orbital method for the ground and excited state calculations of large systems.
    Nakata H; Fedorov DG; Yokojima S; Kitaura K; Sakurai M; Nakamura S
    J Chem Phys; 2014 Apr; 140(14):144101. PubMed ID: 24735282
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Three-Body Energy Decomposition Analysis Based on the Fragment Molecular Orbital Method.
    Fedorov DG
    J Phys Chem A; 2020 Jun; 124(24):4956-4971. PubMed ID: 32447956
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Simulations of Chemical Reactions with the Frozen Domain Formulation of the Fragment Molecular Orbital Method.
    Nakata H; Fedorov DG; Nagata T; Kitaura K; Nakamura S
    J Chem Theory Comput; 2015 Jul; 11(7):3053-64. PubMed ID: 26575742
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Solvation dynamics and energetics of intramolecular hydride transfer reactions in biomass conversion.
    Mushrif SH; Varghese JJ; Krishnamurthy CB
    Phys Chem Chem Phys; 2015 Feb; 17(7):4961-9. PubMed ID: 25591500
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modified Poisson equations for calculating solvation free energy.
    Yang PK
    Biophys Chem; 2017 Feb; 221():26-40. PubMed ID: 27951444
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular dynamics and quantum mechanics of RNA: conformational and chemical change we can believe in.
    Ditzler MA; Otyepka M; Sponer J; Walter NG
    Acc Chem Res; 2010 Jan; 43(1):40-7. PubMed ID: 19754142
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analyzing GPCR-Ligand Interactions with the Fragment Molecular Orbital (FMO) Method.
    Heifetz A; James T; Southey M; Morao I; Fedorov DG; Bodkin MJ; Townsend-Nicholson A
    Methods Mol Biol; 2020; 2114():163-175. PubMed ID: 32016893
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.