These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 35142210)
1. Activating Surface Lattice Oxygen of a Cu/Zn Zeng M; Wang X; Yang Q; Chu X; Chen Z; Li Z; Redshaw C; Wang C; Peng Y; Wang N; Zhu Y; Wu YA ACS Appl Mater Interfaces; 2022 Feb; 14(7):9882-9890. PubMed ID: 35142210 [TBL] [Abstract][Full Text] [Related]
2. Sorption-oxidation mechanism for the removal of arsenic (III) using Cu-doped ZnO in an alkaline medium. Gyrdasova ОI; Pasechnik LA; Krasil'nikov VN; Gavrilova TP; Yatsyk IV; Kuznetsova YV; Kalinkin MO; Kuznetsov MV Water Environ Res; 2023 Dec; 95(12):e10956. PubMed ID: 38115184 [TBL] [Abstract][Full Text] [Related]
3. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction. Senanayake SD; Stacchiola D; Rodriguez JA Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528 [TBL] [Abstract][Full Text] [Related]
4. Constructing Active Cu Zhu D; Huang Y; Li R; Peng S; Wang P; Cao JJ Environ Sci Technol; 2023 Nov; 57(45):17598-17609. PubMed ID: 37906717 [TBL] [Abstract][Full Text] [Related]
5. Dual Activation of Molecular Oxygen and Surface Lattice Oxygen in Single Atom Cu Fang Y; Zhang Q; Zhang H; Li X; Chen W; Xu J; Shen H; Yang J; Pan C; Zhu Y; Wang J; Luo Z; Wang L; Bai X; Song F; Zhang L; Guo Y Angew Chem Int Ed Engl; 2022 Nov; 61(48):e202212273. PubMed ID: 36196008 [TBL] [Abstract][Full Text] [Related]
6. Exploring the dynamic evolution of lattice oxygen on exsolved-Mn Wang X; Yang Q; Li X; Li Z; Gao C; Zhang H; Chu X; Redshaw C; Shi S; Wu YA; Ma Y; Peng Y; Li J; Feng S Nat Commun; 2024 Sep; 15(1):7613. PubMed ID: 39223132 [TBL] [Abstract][Full Text] [Related]
7. Elucidating the Nature of the Cu(I) Active Site in CuO/TiO Fang Y; Chi X; Li L; Yang J; Liu S; Lu X; Xiao W; Wang L; Luo Z; Yang W; Hu S; Xiong J; Hoang S; Deng H; Liu F; Zhang L; Gao P; Ding J; Guo Y ACS Appl Mater Interfaces; 2020 Feb; 12(6):7091-7101. PubMed ID: 31931575 [TBL] [Abstract][Full Text] [Related]
8. Tuning the surface reactivity of oxides by peroxide species. Zhu Y; Wang J; Patel SB; Li C; Head AR; Boscoboinik JA; Zhou G Proc Natl Acad Sci U S A; 2023 Mar; 120(13):e2215189120. PubMed ID: 36943886 [TBL] [Abstract][Full Text] [Related]
9. Catalyst-free direct vapor-phase growth of Zn1-xCuxO micro-cross structures and their optical properties. Xu D; Fan D; Shen W Nanoscale Res Lett; 2013 Jan; 8(1):46. PubMed ID: 23339397 [TBL] [Abstract][Full Text] [Related]
10. Activation of molecular oxygen and the nature of the active oxygen species for CO oxidation on oxide supported Au catalysts. Widmann D; Behm RJ Acc Chem Res; 2014 Mar; 47(3):740-9. PubMed ID: 24555537 [TBL] [Abstract][Full Text] [Related]
13. Reactivity of Lattice Oxygen in Ti-Site-Substituted SrTiO Yoshiyama Y; Hosokawa S; Haneda M; Morishita M; Asakura H; Teramura K; Tanaka T ACS Appl Mater Interfaces; 2023 Feb; 15(4):5293-5300. PubMed ID: 36660899 [TBL] [Abstract][Full Text] [Related]
14. Atomic-Scale Insights into Surface Lattice Oxygen Activation at the Spinel/Perovskite interface of Co Wang X; Pan Z; Chu X; Huang K; Cong Y; Cao R; Sarangi R; Li L; Li G; Feng S Angew Chem Int Ed Engl; 2019 Aug; 58(34):11720-11725. PubMed ID: 31228315 [TBL] [Abstract][Full Text] [Related]
15. The remarkable enhancement of CO-pretreated CuO-Mn2O3/γ-Al2O3 supported catalyst for the reduction of NO with CO: the formation of surface synergetic oxygen vacancy. Li D; Yu Q; Li SS; Wan HQ; Liu LJ; Qi L; Liu B; Gao F; Dong L; Chen Y Chemistry; 2011 May; 17(20):5668-79. PubMed ID: 21688407 [TBL] [Abstract][Full Text] [Related]
16. Tuning the properties of copper-based catalysts based on molecular in situ studies of model systems. Stacchiola DJ Acc Chem Res; 2015 Jul; 48(7):2151-8. PubMed ID: 26103058 [TBL] [Abstract][Full Text] [Related]
17. Evidence of Mars-Van-Krevelen Mechanism in the Electrochemical Oxygen Evolution on Ni-Based Catalysts. Ferreira de Araújo J; Dionigi F; Merzdorf T; Oh HS; Strasser P Angew Chem Int Ed Engl; 2021 Jun; 60(27):14981-14988. PubMed ID: 33830603 [TBL] [Abstract][Full Text] [Related]
18. Activating Inert Alkali-Metal Ions by Electron Transfer from Manganese Oxide for Formaldehyde Abatement. Gao J; Huang Z; Chen Y; Wan J; Gu X; Ma Z; Chen J; Tang X Chemistry; 2018 Jan; 24(3):681-689. PubMed ID: 29030889 [TBL] [Abstract][Full Text] [Related]
19. Enhanced CH Li D; Li K; Xu R; Zhu X; Wei Y; Tian D; Cheng X; Wang H ACS Appl Mater Interfaces; 2019 May; 11(21):19227-19241. PubMed ID: 31067022 [TBL] [Abstract][Full Text] [Related]
20. Boosting catalytic stability for VOCs removal by constructing PtCu alloy structure with superior oxygen activation behavior. Feng Y; Wei L; Wang Z; Liu Y; Dai H; Wang C; Hsi HC; Duan E; Peng Y; Deng J J Hazard Mater; 2022 Oct; 439():129612. PubMed ID: 35872456 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]