BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 35142410)

  • 1. Direct Addition of Grignard Reagents to Aliphatic Carboxylic Acids Enabled by Bulky turbo-Organomagnesium Anilides.
    Colas K; Dos Santos ACVD; Kohlhepp SV; Mendoza A
    Chemistry; 2022 Feb; 28(9):e202200295. PubMed ID: 35142410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct Addition of Grignard Reagents to Aliphatic Carboxylic Acids Enabled by Bulky turbo-Organomagnesium Anilides.
    Colas K; V D Dos Santos AC; Kohlhepp SV; Mendoza A
    Chemistry; 2022 Feb; 28(9):e202104053. PubMed ID: 35084063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disposable cartridge concept for the on-demand synthesis of turbo Grignards, Knochel-Hauser amides, and magnesium alkoxides.
    Berton M; Sheehan K; Adamo A; McQuade DT
    Beilstein J Org Chem; 2020; 16():1343-1356. PubMed ID: 32595782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct transformation of esters into arenes with 1,5-bifunctional organomagnesium reagents.
    Link A; Fischer C; Sparr C
    Angew Chem Int Ed Engl; 2015 Oct; 54(41):12163-6. PubMed ID: 26291060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The quest for chiral Grignard reagents.
    Hoffmann RW
    Chem Soc Rev; 2003 Jul; 32(4):225-30. PubMed ID: 12875028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving the Halogen-Magnesium Exchange by using New Turbo-Grignard Reagents.
    Ziegler DS; Wei B; Knochel P
    Chemistry; 2019 Feb; 25(11):2695-2703. PubMed ID: 30230067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of 1,2,3-triazoles using Grignard reactions through the protection of azides.
    Namioka R; Suzuki M; Yoshida S
    Front Chem; 2023; 11():1237878. PubMed ID: 37583567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Esterification of Tertiary Amides: Remarkable Additive Effects of Potassium Alkoxides for Generating Hetero Manganese-Potassium Dinuclear Active Species.
    Hirai T; Kato D; Mai BK; Katayama S; Akiyama S; Nagae H; Himo F; Mashima K
    Chemistry; 2020 Aug; 26(47):10647. PubMed ID: 32776619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Iodide-Mediated Anodic Amide Coupling.
    Großmann LM; Beier V; Duttenhofer L; Lennartz L; Opatz T
    Chemistry; 2022 Sep; 28(54):e202202725. PubMed ID: 36106367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comprehensive Study of the Enhanced Reactivity of Turbo-Grignard Reagents.
    Hermann A; Seymen R; Brieger L; Kleinheider J; Grabe B; Hiller W; Strohmann C
    Angew Chem Int Ed Engl; 2023 Jun; 62(25):e202302489. PubMed ID: 36971042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iridium-Catalyzed Direct Reductive Amination of Ketones and Secondary Amines: Breaking the Aliphatic Wall.
    Jouffroy M; Nguyen TM; Cordier M; Blot M; Roisnel T; Gramage-Doria R
    Chemistry; 2022 Jun; 28(36):e202201592. PubMed ID: 35678494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational and Experimental Study of Turbo-Organomagnesium Amide Reagents: Cubane Aggregates as Reactive Intermediates in Pummerer Coupling.
    Planas F; Kohlhepp SV; Huang G; Mendoza A; Himo F
    Chemistry; 2021 Feb; 27(8):2767-2773. PubMed ID: 33044772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dithieno[a,e]pentalenes: Highly Antiaromatic Yet Stable π-Electron Systems without Bulky Substituents.
    Usuba J; Hayakawa M; Yamaguchi S; Fukazawa A
    Chemistry; 2021 Jan; 27(5):1482. PubMed ID: 33252153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterogeneous Olefin Hydrogenation Enabled by a Highly-Reduced Nickel(-II) Catalyst Precursor.
    Maier TM; Sandl S; Melzl P; Zweck J; Jacobi von Wangelin A; Wolf R
    Chemistry; 2020 May; 26(28):6089. PubMed ID: 32350956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct Aroylation of Olefins through a Cobalt/Photoredox-Catalyzed Decarboxylative and Dehydrogenative Coupling with α-Oxo Acids.
    Davies AM; Hernandez RD; Tunge JA
    Chemistry; 2022 Dec; 28(72):e202203641. PubMed ID: 36480768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. S-(Trifluoromethyl)Benzothioate (TFBT): A KF-Based Reagent for Nucleophilic Trifluoromethylthiolation.
    Meng D; Lyu Y; Ni C; Zhou M; Li Y; Hu J
    Chemistry; 2022 Mar; 28(13):e202200483. PubMed ID: 35218090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. (o-Phenylenediamino)borylstannanes: Efficient Reagents for Borylation of Various Alkyl Radical Precursors.
    Suzuki K; Nishimoto Y; Yasuda M
    Chemistry; 2021 Feb; 27(12):3891. PubMed ID: 33475218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetically Controlled, Highly Chemoselective Acylation of Functionalized Grignard Reagents with Amides by N-C Cleavage.
    Li G; Szostak M
    Chemistry; 2020 Jan; 26(3):611-615. PubMed ID: 31696589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of carboxylic amides by ring-opening of oxazolidinones with Grignard reagents.
    Bensa D; Coldham I; Feinäugle P; Pathak RB; Butlin RJ
    Org Biomol Chem; 2008 Apr; 6(8):1410-5. PubMed ID: 18385847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Palladium(0)-Catalyzed Anti-Selective Addition-Cyclizations of Alkynyl Electrophiles.
    Tsukamoto H; Ito K; Ueno T; Shiraishi M; Kondo Y; Doi T
    Chemistry; 2023 Jan; 29(6):e202300086. PubMed ID: 36690588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.