These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 35142427)

  • 1. Metabolic cost of flight and aerobic efficiency in the rose chafer, Protaetia cuprea (Cetoniinae).
    Urca T; Levin E; Ribak G
    Insect Sci; 2022 Oct; 29(5):1361-1372. PubMed ID: 35142427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elastic wing deformations mitigate flapping asymmetry during manoeuvres in rose chafers (
    Meresman Y; Ribak G
    J Exp Biol; 2020 Dec; 223(Pt 24):. PubMed ID: 33168594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insect flight metabolic rate revealed by bolus injection of the stable isotope
    Urca T; Levin E; Ribak G
    Proc Biol Sci; 2021 Jun; 288(1953):20211082. PubMed ID: 34187193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intraspecific scaling and early life history determine the cost of free-flight in a large beetle (Batocera rufomaculata).
    Urca T; Levin E; Gefen E; Ribak G
    Insect Sci; 2024 Apr; 31(2):524-532. PubMed ID: 37469199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Allometry of wing twist and camber in a flower chafer during free flight: How do wing deformations scale with body size?
    Meresman Y; Ribak G
    R Soc Open Sci; 2017 Oct; 4(10):171152. PubMed ID: 29134103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermoregulation in endothermic insects.
    Heinrich B
    Science; 1974 Aug; 185(4153):747-56. PubMed ID: 4602075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The relationship between body size and flight power output in the mango stem borer (Batocera rufomaculata).
    Urca T; Ribak G
    J Insect Physiol; 2021; 133():104290. PubMed ID: 34352283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Refueling while flying: foraging bats combust food rapidly and directly to power flight.
    Voigt CC; Sörgel K; Dechmann DK
    Ecology; 2010 Oct; 91(10):2908-17. PubMed ID: 21058551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphological diversification has led to inter-specific variation in elastic wing deformation during flight in scarab beetles.
    Meresman Y; Husak JF; Ben-Shlomo R; Ribak G
    R Soc Open Sci; 2020 Apr; 7(4):200277. PubMed ID: 32431909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conversion efficiency of flight power is low, but increases with flight speed in the migratory bat
    Currie SE; Johansson LC; Aumont C; Voigt CC; Hedenström A
    Proc Biol Sci; 2023 May; 290(1998):20230045. PubMed ID: 37132234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measuring power input, power output and energy conversion efficiency in un-instrumented flying birds.
    Hedh L; Guglielmo CG; Johansson LC; Deakin JE; Voigt CC; Hedenström A
    J Exp Biol; 2020 Sep; 223(Pt 18):. PubMed ID: 32796040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phylogeography and DNA-based species delimitation provide insight into the taxonomy of the polymorphic rose chafer Protaetia (Potosia) cuprea species complex (Coleoptera: Scarabaeidae: Cetoniinae) in the Western Palearctic.
    Vondráček D; Fuchsová A; Ahrens D; Král D; Šípek P
    PLoS One; 2018; 13(2):e0192349. PubMed ID: 29462164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carrying large fuel loads during sustained bird flight is cheaper than expected.
    Kvist A; Lindström A ; Green M; Piersma T; Visser GH
    Nature; 2001 Oct; 413(6857):730-2. PubMed ID: 11607031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energetic cost of hovering flight in nectar-feeding bats (Phyllostomidae: Glossophaginae) and its scaling in moths, birds and bats.
    Voigt CC; Winter Y
    J Comp Physiol B; 1999 Feb; 169(1):38-48. PubMed ID: 10093905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Perch-hunting in insectivorous Rhinolophus bats is related to the high energy costs of manoeuvring in flight.
    Voigt CC; Schuller BM; Greif S; Siemers BM
    J Comp Physiol B; 2010 Oct; 180(7):1079-88. PubMed ID: 20354704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The efficiency of an asynchronous flight muscle from a beetle.
    Josephson RK; Malamud JG; Stokes DR
    J Exp Biol; 2001 Dec; 204(Pt 23):4125-39. PubMed ID: 11809787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flight speed and body mass of nectar-feeding bats (Glossophaginae) during foraging.
    Winter Y
    J Exp Biol; 1999 Jul; 202(Pt 14):1917-30. PubMed ID: 10377273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A molecular phylogeny of rose chafers (Coleoptera: Scarabaeidae: Cetoniinae) reveals a complex and concerted morphological evolution related to their flight mode.
    Šípek P; Fabrizi S; Eberle J; Ahrens D
    Mol Phylogenet Evol; 2016 Aug; 101():163-175. PubMed ID: 27165937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the cost of short flights in a nectarivorous and a non-nectarivorous bird.
    Hambly C; Pinshow B; Wiersma P; Verhulst S; Piertney SB; Harper EJ; Speakman JR
    J Exp Biol; 2004 Oct; 207(Pt 22):3959-68. PubMed ID: 15472026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nathusius' bats optimize long-distance migration by flying at maximum range speed.
    Troxell SA; Holderied MW; Pētersons G; Voigt CC
    J Exp Biol; 2019 Feb; 222(Pt 4):. PubMed ID: 30814276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.