These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 35142608)

  • 1. A vibrissa pathway that activates the limbic system.
    Elbaz M; Callado Perez A; Demers M; Zhao S; Foo C; Kleinfeld D; Deschenes M
    Elife; 2022 Feb; 11():. PubMed ID: 35142608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Angular tuning bias of vibrissa-responsive cells in the paralemniscal pathway.
    Furuta T; Nakamura K; Deschenes M
    J Neurosci; 2006 Oct; 26(41):10548-57. PubMed ID: 17035540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vibrissa Self-Motion and Touch Are Reliably Encoded along the Same Somatosensory Pathway from Brainstem through Thalamus.
    Moore JD; Mercer Lindsay N; Deschênes M; Kleinfeld D
    PLoS Biol; 2015; 13(9):e1002253. PubMed ID: 26393890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Central projections of primary sensory neurons innervating different parts of the vibrissae follicles and intervibrissal skin on the mystacial pad of the rat.
    Arvidsson J; Rice FL
    J Comp Neurol; 1991 Jul; 309(1):1-16. PubMed ID: 1716645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Difference in the functional significance between the lemniscal and paralemniscal pathways in the perception of direction of single-whisker stimulation examined by muscimol microinjection.
    Nakamura S; Narumi T; Tsutsui K; Iijima T
    Neurosci Res; 2009 Jul; 64(3):323-9. PubMed ID: 19376165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parvalbumin and calbindin immunocytochemistry reveal functionally distinct cell groups and vibrissa-related patterns in the trigeminal brainstem complex of the adult rat.
    Bennett-Clarke CA; Chiaia NL; Jacquin MF; Rhoades RW
    J Comp Neurol; 1992 Jun; 320(3):323-38. PubMed ID: 1377200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Corticofugal control of vibrissa-sensitive neurons in the interpolaris nucleus of the trigeminal complex.
    Furuta T; Urbain N; Kaneko T; Deschênes M
    J Neurosci; 2010 Feb; 30(5):1832-8. PubMed ID: 20130192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphology and topography of identified primary afferents in trigeminal subnuclei principalis and oralis.
    Jacquin MF; Renehan WE; Rhoades RW; Panneton WM
    J Neurophysiol; 1993 Nov; 70(5):1911-36. PubMed ID: 8294963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Topography of primary afferent projections in the trigeminal sensory nuclei of rats.
    Florence SL; Lakshman S
    Acta Neurobiol Exp (Wars); 1995; 55(3):193-200. PubMed ID: 8553912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feedback in the brainstem: an excitatory disynaptic pathway for control of whisking.
    Matthews DW; Deschênes M; Furuta T; Moore JD; Wang F; Karten HJ; Kleinfeld D
    J Comp Neurol; 2015 Apr; 523(6):921-42. PubMed ID: 25503925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Lemniscal and paralemniscal afferent pathways in rodents' trigeminal system are integrated at the level of the somatosensory cortex].
    Sitnikova EIu; Raevskiĭ VV
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2009; 59(1):98-106. PubMed ID: 19338254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interdigitated paralemniscal and lemniscal pathways in the mouse barrel cortex.
    Bureau I; von Saint Paul F; Svoboda K
    PLoS Biol; 2006 Nov; 4(12):e382. PubMed ID: 17121453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impaired trigeminal control of ingestive behavior in the Prrxl1-/- mouse is associated with a lemniscal-biased orosensory deafferentation.
    Resulaj A; Wu J; Hartmann MJZ; Feinstein P; Zeigler HP
    PLoS One; 2022; 17(4):e0258837. PubMed ID: 35389991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical resonance enhances the sensitivity of the vibrissa sensory system to near-threshold stimuli.
    Andermann ML; Moore CI
    Brain Res; 2008 Oct; 1235():74-81. PubMed ID: 18625209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transformation from temporal to rate coding in a somatosensory thalamocortical pathway.
    Ahissar E; Sosnik R; Haidarliu S
    Nature; 2000 Jul; 406(6793):302-6. PubMed ID: 10917531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Positive feedback in a brainstem tactile sensorimotor loop.
    Nguyen QT; Kleinfeld D
    Neuron; 2005 Feb; 45(3):447-57. PubMed ID: 15694330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The lemniscal and paralemniscal pathways of the trigeminal system in rodents are integrated at the level of the somatosensory cortex.
    Sitnikova EY; Raevskii VV
    Neurosci Behav Physiol; 2010 Mar; 40(3):325-31. PubMed ID: 20148310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On-going computation of whisking phase by mechanoreceptors.
    Wallach A; Bagdasarian K; Ahissar E
    Nat Neurosci; 2016 Mar; 19(3):487-93. PubMed ID: 26780508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for prenatal competition among the central arbors of trigeminal primary afferent neurons.
    Chiaia NL; Bennett-Clarke CA; Eck M; White FA; Crissman RS; Rhoades RW
    J Neurosci; 1992 Jan; 12(1):62-76. PubMed ID: 1309577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Opposite adaptive processing of stimulus intensity in two major nuclei of the somatosensory brainstem.
    Mohar B; Katz Y; Lampl I
    J Neurosci; 2013 Sep; 33(39):15394-400. PubMed ID: 24068807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.