These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 35142663)

  • 41. Neuroprotection from complement-mediated inflammatory damage.
    Kulkarni AP; Kellaway LA; Lahiri DK; Kotwal GJ
    Ann N Y Acad Sci; 2004 Dec; 1035():147-64. PubMed ID: 15681806
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Modifiers of radiation effects in the eye.
    Kleiman NJ; Stewart FA; Hall EJ
    Life Sci Space Res (Amst); 2017 Nov; 15():43-54. PubMed ID: 29198313
    [TBL] [Abstract][Full Text] [Related]  

  • 43. NEIL1 stimulates neurogenesis and suppresses neuroinflammation after stress.
    Yang B; Figueroa DM; Hou Y; Babbar M; Baringer SL; Croteau DL; Bohr VA
    Free Radic Biol Med; 2019 Sep; 141():47-58. PubMed ID: 31175982
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Reduction-oxidation (redox) system in radiation-induced normal tissue injury: molecular mechanisms and implications in radiation therapeutics.
    Yahyapour R; Motevaseli E; Rezaeyan A; Abdollahi H; Farhood B; Cheki M; Rezapoor S; Shabeeb D; Musa AE; Najafi M; Villa V
    Clin Transl Oncol; 2018 Aug; 20(8):975-988. PubMed ID: 29318449
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The brain as a target for inflammatory processes and neuroprotective strategies.
    Skaper SD
    Ann N Y Acad Sci; 2007 Dec; 1122():23-34. PubMed ID: 18077562
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Neuroinflammation after traumatic brain injury: opportunities for therapeutic intervention.
    Kumar A; Loane DJ
    Brain Behav Immun; 2012 Nov; 26(8):1191-201. PubMed ID: 22728326
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Radioprotective effects of induced astronaut torpor and advanced propulsion systems during deep space travel.
    Squire T; Ryan A; Bernard S
    Life Sci Space Res (Amst); 2020 Aug; 26():105-113. PubMed ID: 32718676
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The chemical biology of clinically tolerated NMDA receptor antagonists.
    Chen HS; Lipton SA
    J Neurochem; 2006 Jun; 97(6):1611-26. PubMed ID: 16805772
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Intercellular communications-redox interactions in radiation toxicity; potential targets for radiation mitigation.
    Farhood B; Goradel NH; Mortezaee K; Khanlarkhani N; Salehi E; Nashtaei MS; Shabeeb D; Musa AE; Fallah H; Najafi M
    J Cell Commun Signal; 2019 Mar; 13(1):3-16. PubMed ID: 29911259
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Radiation-induced bystander effect: the important part of ionizing radiation response. Potential clinical implications].
    Wideł M; Przybyszewski W; Rzeszowska-Wolny J
    Postepy Hig Med Dosw (Online); 2009 Aug; 63():377-88. PubMed ID: 19724078
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Modulating processes within the central nervous system is central to therapeutic control of multiple sclerosis.
    Ziemssen T
    J Neurol; 2005 Nov; 252 Suppl 5():v38-45. PubMed ID: 16254701
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Profile of anticonvulsant activity and neuroprotective effects of novel and potential antiepileptic drugs--an update.
    Stepień K; Tomaszewski M; Czuczwar SJ
    Pharmacol Rep; 2005; 57(6):719-33. PubMed ID: 16382190
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Activation of deoxyribonucleotide synthesis by radioprotectants and antioxidants as a key stage in formation of body resistance to DNA-damaging factors].
    Sharygin VL; Pulatova MK; Shliakova TG; Mitrokhin IuI; Todorov IN
    Izv Akad Nauk Ser Biol; 2005; (4):401-22. PubMed ID: 16212261
    [TBL] [Abstract][Full Text] [Related]  

  • 54. New pharmacological approaches in infants with hypoxic-ischemic encephalopathy.
    Buonocore G; Perrone S; Turrisi G; Kramer BW; Balduini W
    Curr Pharm Des; 2012; 18(21):3086-100. PubMed ID: 22564301
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Atomically precise silver clusterzymes protect mice from radiation damages.
    Guo J; Yang H; Liu Y; Liu W; Zhao R; Li H; Long W; Xu W; Guo M; Zhang X
    J Nanobiotechnology; 2021 Nov; 19(1):377. PubMed ID: 34798888
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Potential Role of Phenolic Extracts of
    Hanafy DM; Burrows GE; Prenzler PD; Hill RA
    Antioxidants (Basel); 2020 Jul; 9(7):. PubMed ID: 32709074
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Trends in pharmacological stimulation of regeneration of ionizing radiation-damaged mammalian organism.
    Hofer M
    Cas Lek Cesk; 2020; 159(7-8):275-280. PubMed ID: 33445933
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Neurodegeneration by oxidative stress: a review on prospective use of small molecules for neuroprotection.
    Singh E; Devasahayam G
    Mol Biol Rep; 2020 Apr; 47(4):3133-3140. PubMed ID: 32162127
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Research progress on radioprotective effects of bee products.
    Zhang X; Song H; Tang X; Wang S; Li J; Hao Y
    Int J Radiat Biol; 2021; 97(4):444-451. PubMed ID: 33464164
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Metformin as a Radiation Modifier; Implications to Normal Tissue Protection and Tumor Sensitization.
    Mortezaee K; Shabeeb D; Musa AE; Najafi M; Farhood B
    Curr Clin Pharmacol; 2019; 14(1):41-53. PubMed ID: 30360725
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.