BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 35142859)

  • 1. Deep dive into CO2-dependent molecular mechanisms driving stomatal responses in plants.
    Dubeaux G; Hsu PK; Ceciliato PHO; Swink KJ; Rappel WJ; Schroeder JI
    Plant Physiol; 2021 Dec; 187(4):2032-2042. PubMed ID: 35142859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Abscisic acid-independent stomatal CO
    Hsu PK; Takahashi Y; Munemasa S; Merilo E; Laanemets K; Waadt R; Pater D; Kollist H; Schroeder JI
    Proc Natl Acad Sci U S A; 2018 Oct; 115(42):E9971-E9980. PubMed ID: 30282744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stomatal function, density and pattern, and CO
    Vráblová M; Vrábl D; Hronková M; Kubásek J; Šantrůček J
    Plant Biol (Stuttg); 2017 Sep; 19(5):689-701. PubMed ID: 28453883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elevated CO
    Higaki T; Akita K; Hasezawa S
    Genes Cells; 2020 Jul; 25(7):475-482. PubMed ID: 32294311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elevated CO2-Induced Responses in Stomata Require ABA and ABA Signaling.
    Chater C; Peng K; Movahedi M; Dunn JA; Walker HJ; Liang YK; McLachlan DH; Casson S; Isner JC; Wilson I; Neill SJ; Hedrich R; Gray JE; Hetherington AM
    Curr Biol; 2015 Oct; 25(20):2709-16. PubMed ID: 26455301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Jasmonate-mediated stomatal closure under elevated CO
    Geng S; Misra BB; de Armas E; Huhman DV; Alborn HT; Sumner LW; Chen S
    Plant J; 2016 Dec; 88(6):947-962. PubMed ID: 27500669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stomatal and non-stomatal limitations in savanna trees and C
    Bellasio C; Quirk J; Beerling DJ
    Plant Sci; 2018 Sep; 274():181-192. PubMed ID: 30080602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The HT1 protein kinase is essential for red light-induced stomatal opening and genetically interacts with OST1 in red light and CO2 -induced stomatal movement responses.
    Matrosova A; Bogireddi H; Mateo-Peñas A; Hashimoto-Sugimoto M; Iba K; Schroeder JI; Israelsson-Nordström M
    New Phytol; 2015 Dec; 208(4):1126-37. PubMed ID: 26192339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blue light and CO
    Hiyama A; Takemiya A; Munemasa S; Okuma E; Sugiyama N; Tada Y; Murata Y; Shimazaki KI
    Nat Commun; 2017 Nov; 8(1):1284. PubMed ID: 29101334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Transmembrane Region of Guard Cell SLAC1 Channels Perceives CO2 Signals via an ABA-Independent Pathway in Arabidopsis.
    Yamamoto Y; Negi J; Wang C; Isogai Y; Schroeder JI; Iba K
    Plant Cell; 2016 Feb; 28(2):557-67. PubMed ID: 26764376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stomatal development in Arabidopsis and grasses: differences and commonalities.
    Serna L
    Int J Dev Biol; 2011; 55(1):5-10. PubMed ID: 21425077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of stomatal density by the GTL1 transcription factor for improving water use efficiency.
    Yoo CY; Hasegawa PM; Mickelbart MV
    Plant Signal Behav; 2011 Jul; 6(7):1069-71. PubMed ID: 21691149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The ABC transporter AtABCB14 is a malate importer and modulates stomatal response to CO2.
    Lee M; Choi Y; Burla B; Kim YY; Jeon B; Maeshima M; Yoo JY; Martinoia E; Lee Y
    Nat Cell Biol; 2008 Oct; 10(10):1217-23. PubMed ID: 18776898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PYR/RCAR receptors contribute to ozone-, reduced air humidity-, darkness-, and CO2-induced stomatal regulation.
    Merilo E; Laanemets K; Hu H; Xue S; Jakobson L; Tulva I; Gonzalez-Guzman M; Rodriguez PL; Schroeder JI; Broschè M; Kollist H
    Plant Physiol; 2013 Jul; 162(3):1652-68. PubMed ID: 23703845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of leaf photosynthetic capacity through increased stomatal density in Arabidopsis.
    Tanaka Y; Sugano SS; Shimada T; Hara-Nishimura I
    New Phytol; 2013 May; 198(3):757-764. PubMed ID: 23432385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stomatal Spacing Safeguards Stomatal Dynamics by Facilitating Guard Cell Ion Transport Independent of the Epidermal Solute Reservoir.
    Papanatsiou M; Amtmann A; Blatt MR
    Plant Physiol; 2016 Sep; 172(1):254-63. PubMed ID: 27406168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Munc13-like protein in Arabidopsis mediates H+-ATPase translocation that is essential for stomatal responses.
    Hashimoto-Sugimoto M; Higaki T; Yaeno T; Nagami A; Irie M; Fujimi M; Miyamoto M; Akita K; Negi J; Shirasu K; Hasezawa S; Iba K
    Nat Commun; 2013; 4():2215. PubMed ID: 23896897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The trafficking protein SYP121 of Arabidopsis connects programmed stomatal closure and K⁺ channel activity with vegetative growth.
    Eisenach C; Chen ZH; Grefen C; Blatt MR
    Plant J; 2012 Jan; 69(2):241-51. PubMed ID: 21914010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. What causes opposing actions of brassinosteroids on stomatal development?
    Serna L
    Plant Physiol; 2013 May; 162(1):3-8. PubMed ID: 23482875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of stomatal development.
    Pillitteri LJ; Torii KU
    Annu Rev Plant Biol; 2012; 63():591-614. PubMed ID: 22404473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.