BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 35142859)

  • 41. The BIG protein distinguishes the process of CO
    He J; Zhang RX; Peng K; Tagliavia C; Li S; Xue S; Liu A; Hu H; Zhang J; Hubbard KE; Held K; McAinsh MR; Gray JE; Kudla J; Schroeder JI; Liang YK; Hetherington AM
    New Phytol; 2018 Apr; 218(1):232-241. PubMed ID: 29292834
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Acetylated 1,3-diaminopropane antagonizes abscisic acid-mediated stomatal closing in Arabidopsis.
    Jammes F; Leonhardt N; Tran D; Bousserouel H; Véry AA; Renou JP; Vavasseur A; Kwak JM; Sentenac H; Bouteau F; Leung J
    Plant J; 2014 Jul; 79(2):322-33. PubMed ID: 24891222
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An abscisic acid-independent oxylipin pathway controls stomatal closure and immune defense in Arabidopsis.
    Montillet JL; Leonhardt N; Mondy S; Tranchimand S; Rumeau D; Boudsocq M; Garcia AV; Douki T; Bigeard J; Laurière C; Chevalier A; Castresana C; Hirt H
    PLoS Biol; 2013; 11(3):e1001513. PubMed ID: 23526882
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Light-induced STOMAGEN-mediated stomatal development in Arabidopsis leaves.
    Hronková M; Wiesnerová D; Šimková M; Skůpa P; Dewitte W; Vráblová M; Zažímalová E; Šantrůček J
    J Exp Bot; 2015 Aug; 66(15):4621-30. PubMed ID: 26002974
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The role of ABA recycling and transporter proteins in rapid stomatal responses to reduced air humidity, elevated CO2, and exogenous ABA.
    Merilo E; Jalakas P; Kollist H; Brosché M
    Mol Plant; 2015 Apr; 8(4):657-9. PubMed ID: 25620768
    [No Abstract]   [Full Text] [Related]  

  • 46. Active ROP2 GTPase inhibits ABA- and CO2-induced stomatal closure.
    Hwang JU; Jeon BW; Hong D; Lee Y
    Plant Cell Environ; 2011 Dec; 34(12):2172-82. PubMed ID: 21883287
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Global change: The grass response.
    Baldocchi D
    Nature; 2011 Aug; 476(7359):160-1. PubMed ID: 21833081
    [No Abstract]   [Full Text] [Related]  

  • 48. Photorespiration Is Crucial for Dynamic Response of Photosynthetic Metabolism and Stomatal Movement to Altered CO
    Eisenhut M; Bräutigam A; Timm S; Florian A; Tohge T; Fernie AR; Bauwe H; Weber APM
    Mol Plant; 2017 Jan; 10(1):47-61. PubMed ID: 27702693
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Iron nanoparticle-induced activation of plasma membrane H(+)-ATPase promotes stomatal opening in Arabidopsis thaliana.
    Kim JH; Oh Y; Yoon H; Hwang I; Chang YS
    Environ Sci Technol; 2015 Jan; 49(2):1113-9. PubMed ID: 25496563
    [TBL] [Abstract][Full Text] [Related]  

  • 50. FRET kinase sensor development reveals SnRK2/OST1 activation by ABA but not by MeJA and high CO
    Zhang L; Takahashi Y; Hsu PK; Kollist H; Merilo E; Krysan PJ; Schroeder JI
    Elife; 2020 May; 9():. PubMed ID: 32463362
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Differential Function of Arabidopsis SERK Family Receptor-like Kinases in Stomatal Patterning.
    Meng X; Chen X; Mang H; Liu C; Yu X; Gao X; Torii KU; He P; Shan L
    Curr Biol; 2015 Sep; 25(18):2361-72. PubMed ID: 26320950
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A Role for Plant KASH Proteins in Regulating Stomatal Dynamics.
    Biel A; Moser M; Meier I
    Plant Physiol; 2020 Feb; 182(2):1100-1113. PubMed ID: 31767690
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A Tandem Amino Acid Residue Motif in Guard Cell SLAC1 Anion Channel of Grasses Allows for the Control of Stomatal Aperture by Nitrate.
    Schäfer N; Maierhofer T; Herrmann J; Jørgensen ME; Lind C; von Meyer K; Lautner S; Fromm J; Felder M; Hetherington AM; Ache P; Geiger D; Hedrich R
    Curr Biol; 2018 May; 28(9):1370-1379.e5. PubMed ID: 29706511
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Brassinosteroid Involvement in Arabidopsis thaliana Stomatal Opening.
    Inoue SI; Iwashita N; Takahashi Y; Gotoh E; Okuma E; Hayashi M; Tabata R; Takemiya A; Murata Y; Doi M; Kinoshita T; Shimazaki KI
    Plant Cell Physiol; 2017 Jun; 58(6):1048-1058. PubMed ID: 28407091
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Stomatal optimisation in relation to atmospheric CO2.
    Buckley TN; Schymanski SJ
    New Phytol; 2014 Jan; 201(2):372-377. PubMed ID: 24124922
    [No Abstract]   [Full Text] [Related]  

  • 56. CASEIN KINASE1-LIKE PROTEIN2 Regulates Actin Filament Stability and Stomatal Closure via Phosphorylation of Actin Depolymerizing Factor.
    Zhao S; Jiang Y; Zhao Y; Huang S; Yuan M; Zhao Y; Guo Y
    Plant Cell; 2016 Jun; 28(6):1422-39. PubMed ID: 27268429
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Regulation of stomatal development in plants].
    Liu J; Wang BS; Xie XZ
    Yi Chuan; 2011 Feb; 33(2):131-7. PubMed ID: 21377969
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of instantaneous and growth CO
    Mizokami Y; Noguchi K; Kojima M; Sakakibara H; Terashima I
    Plant Cell Environ; 2019 Apr; 42(4):1257-1269. PubMed ID: 30468514
    [TBL] [Abstract][Full Text] [Related]  

  • 59. AtNOA1 modulates nitric oxide accumulation and stomatal closure induced by salicylic acid in Arabidopsis.
    Sun LR; Hao FS; Lu BS; Ma LY
    Plant Signal Behav; 2010 Aug; 5(8):1022-4. PubMed ID: 20657186
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The signaling peptide EPF2 controls asymmetric cell divisions during stomatal development.
    Hunt L; Gray JE
    Curr Biol; 2009 May; 19(10):864-9. PubMed ID: 19398336
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.