BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 35142859)

  • 61. ABA-Induced Stomatal Closure Involves ALMT4, a Phosphorylation-Dependent Vacuolar Anion Channel of Arabidopsis.
    Eisenach C; Baetz U; Huck NV; Zhang J; De Angeli A; Beckers GJM; Martinoia E
    Plant Cell; 2017 Oct; 29(10):2552-2569. PubMed ID: 28874508
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Stomatal density is controlled by a mesophyll-derived signaling molecule.
    Kondo T; Kajita R; Miyazaki A; Hokoyama M; Nakamura-Miura T; Mizuno S; Masuda Y; Irie K; Tanaka Y; Takada S; Kakimoto T; Sakagami Y
    Plant Cell Physiol; 2010 Jan; 51(1):1-8. PubMed ID: 20007289
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The influence of stomatal morphology and distribution on photosynthetic gas exchange.
    Harrison EL; Arce Cubas L; Gray JE; Hepworth C
    Plant J; 2020 Feb; 101(4):768-779. PubMed ID: 31583771
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Co-ordination of physiological and morphological responses of stomata to elevated [CO2] in vascular plants.
    Haworth M; Elliott-Kingston C; McElwain JC
    Oecologia; 2013 Jan; 171(1):71-82. PubMed ID: 22810089
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A BLUS1 kinase signal and a decrease in intercellular CO2 concentration are necessary for stomatal opening in response to blue light.
    Hosotani S; Yamauchi S; Kobayashi H; Fuji S; Koya S; Shimazaki KI; Takemiya A
    Plant Cell; 2021 Jul; 33(5):1813-1827. PubMed ID: 33665670
    [TBL] [Abstract][Full Text] [Related]  

  • 66. POLYGALACTURONASE INVOLVED IN EXPANSION3 Functions in Seedling Development, Rosette Growth, and Stomatal Dynamics in
    Rui Y; Xiao C; Yi H; Kandemir B; Wang JZ; Puri VM; Anderson CT
    Plant Cell; 2017 Oct; 29(10):2413-2432. PubMed ID: 28974550
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Cysteine-rich receptor-like kinase CRK5 as a regulator of growth, development, and ultraviolet radiation responses in Arabidopsis thaliana.
    Burdiak P; Rusaczonek A; Witoń D; Głów D; Karpiński S
    J Exp Bot; 2015 Jun; 66(11):3325-37. PubMed ID: 25969551
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Identification of two-component system elements downstream of AHK5 in the stomatal closure response of Arabidopsis thaliana.
    Mira-Rodado V; Veerabagu M; Witthöft J; Teply J; Harter K; Desikan R
    Plant Signal Behav; 2012 Nov; 7(11):1467-76. PubMed ID: 22951399
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The Myrosinases TGG1 and TGG2 Function Redundantly in Reactive Carbonyl Species Signaling in Arabidopsis Guard Cells.
    Rhaman MS; Nakamura T; Nakamura Y; Munemasa S; Murata Y
    Plant Cell Physiol; 2020 May; 61(5):967-977. PubMed ID: 32145024
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Dynamic analysis of epidermal cell divisions identifies specific roles for COP10 in Arabidopsis stomatal lineage development.
    Delgado D; Ballesteros I; Torres-Contreras J; Mena M; Fenoll C
    Planta; 2012 Aug; 236(2):447-61. PubMed ID: 22407427
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The plant innate immunity response in stomatal guard cells invokes G-protein-dependent ion channel regulation.
    Zhang W; He SY; Assmann SM
    Plant J; 2008 Dec; 56(6):984-96. PubMed ID: 18702674
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Does MPK4/12-HT1 function as a CO
    Gahlowt P; Tripathi DK; Singh S; Gupta R; Singh VP
    Plant Cell Rep; 2023 Dec; 42(12):2043-2045. PubMed ID: 37815540
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Transitory Starch Metabolism in Guard Cells: Unique Features for a Unique Function.
    Santelia D; Lunn JE
    Plant Physiol; 2017 Jun; 174(2):539-549. PubMed ID: 28292855
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Arabidopsis COP1 guides stomatal response in guard cells through pH regulation.
    Cha S; Min WK; Seo HS
    Commun Biol; 2024 Feb; 7(1):150. PubMed ID: 38316905
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Distinct guard cell-specific remodeling of chromatin accessibility during abscisic acid- and CO
    Seller CA; Schroeder JI
    Proc Natl Acad Sci U S A; 2023 Dec; 120(52):e2310670120. PubMed ID: 38113262
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Effects of Heavy Metals on Stomata in Plants: A Review.
    Guo Z; Gao Y; Yuan X; Yuan M; Huang L; Wang S; Liu C; Duan C
    Int J Mol Sci; 2023 May; 24(11):. PubMed ID: 37298252
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Distinct guard cell specific remodeling of chromatin accessibility during abscisic acid and CO
    Seller CA; Schroeder JI
    bioRxiv; 2023 Oct; ():. PubMed ID: 37215031
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Boolean modelling in plant biology.
    Karanam A; Rappel WJ
    Quant Plant Biol; 2022; 3():e29. PubMed ID: 37077966
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Anatomical adjustments of the tree hydraulic pathway decrease canopy conductance under long-term elevated CO2.
    Gattmann M; McAdam SAM; Birami B; Link R; Nadal-Sala D; Schuldt B; Yakir D; Ruehr NK
    Plant Physiol; 2023 Jan; 191(1):252-264. PubMed ID: 36250901
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Elevated CO
    Shanker AK; Gunnapaneni D; Bhanu D; Vanaja M; Lakshmi NJ; Yadav SK; Prabhakar M; Singh VK
    Biology (Basel); 2022 Sep; 11(9):. PubMed ID: 36138809
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.