These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 35143001)
1. Transporter drives the biosorption of heavy metals by Stenotrophomonas rhizophila JC1. Sun S; Zhang K; Wu Y; Zhu N; Wang Y; Chen J; Leng F Environ Sci Pollut Res Int; 2022 Jun; 29(30):45380-45395. PubMed ID: 35143001 [TBL] [Abstract][Full Text] [Related]
2. Molecular mechanisms of heavy metals resistance of Stenotrophomonas rhizophila JC1 by whole genome sequencing. Sun SC; Chen JX; Wang YG; Leng FF; Zhao J; Chen K; Zhang QC Arch Microbiol; 2021 Jul; 203(5):2699-2709. PubMed ID: 33715030 [TBL] [Abstract][Full Text] [Related]
3. Comparative transcriptomics revealed the mechanism of Stenotrophomonas rhizophila JC1 response and biosorption to Pb Sun S; Wang Y; He B; Chen J; Leng F; Luo W Environ Geochem Health; 2024 Jun; 46(7):231. PubMed ID: 38849682 [TBL] [Abstract][Full Text] [Related]
4. Biosorption of copper, zinc, cadmium and chromium ions from aqueous solution by natural foxtail millet shell. Peng SH; Wang R; Yang LZ; He L; He X; Liu X Ecotoxicol Environ Saf; 2018 Dec; 165():61-69. PubMed ID: 30193165 [TBL] [Abstract][Full Text] [Related]
5. Biosorption of heavy metals by dry biomass of metal tolerant bacterial biosorbents: an efficient metal clean-up strategy. Rizvi A; Ahmed B; Zaidi A; Khan MS Environ Monit Assess; 2020 Dec; 192(12):801. PubMed ID: 33263175 [TBL] [Abstract][Full Text] [Related]
6. A meta-analysis of metal biosorption by suspended bacteria from three phyla. Fathollahi A; Khasteganan N; Coupe SJ; Newman AP Chemosphere; 2021 Apr; 268():129290. PubMed ID: 33383280 [TBL] [Abstract][Full Text] [Related]
7. Potential application of Allium Cepa seeds as a novel biosorbent for efficient biosorption of heavy metals ions from aqueous solution. Sheikh Z; Amin M; Khan N; Khan MN; Sami SK; Khan SB; Hafeez I; Khan SA; Bakhsh EM; Cheng CK Chemosphere; 2021 Sep; 279():130545. PubMed ID: 33866098 [TBL] [Abstract][Full Text] [Related]
8. Biosorption of Cr (VI) from aqueous solution by extracellular polymeric substances (EPS) produced by Parapedobacter sp. ISTM3 strain isolated from Mawsmai cave, Meghalaya, India. Tyagi B; Gupta B; Thakur IS Environ Res; 2020 Dec; 191():110064. PubMed ID: 32846180 [TBL] [Abstract][Full Text] [Related]
9. Adsorption characteristics of copper, lead, zinc and cadmium ions by tourmaline. Jiang K; Sun TH; Sun LN; Li HB J Environ Sci (China); 2006; 18(6):1221-5. PubMed ID: 17294969 [TBL] [Abstract][Full Text] [Related]
10. Biosorption of heavy metal ions by green alga Neochloris oleoabundans: Effects of metal ion properties and cell wall structure. Gu S; Lan CQ J Hazard Mater; 2021 Sep; 418():126336. PubMed ID: 34329013 [TBL] [Abstract][Full Text] [Related]
11. Characterization of cadmium biosorption by Exiguobacterium sp. isolated from farmland soil near Cu-Pb-Zn mine. Park JH; Chon HT Environ Sci Pollut Res Int; 2016 Jun; 23(12):11814-22. PubMed ID: 26951224 [TBL] [Abstract][Full Text] [Related]
12. Potentiality of phosphorus-accumulating organisms biomasses in biosorption of Cd(II), Pb(II), Cu(II) and Zn(II) from aqueous solutions: Behaviors and mechanisms. Li Q; Wang L; Xu R; Yang Y; Yin H; Jin S; Jiang T Chemosphere; 2022 Sep; 303(Pt 2):135095. PubMed ID: 35618058 [TBL] [Abstract][Full Text] [Related]
13. Adsorption of Hg Hu S; Wei Z; Liu T; Zuo X; Jia X BMC Biotechnol; 2024 Mar; 24(1):15. PubMed ID: 38521922 [TBL] [Abstract][Full Text] [Related]
14. Application of mucilage from Dicerocaryum eriocarpum plant as biosorption medium in the removal of selected heavy metal ions. Jones BO; John OO; Luke C; Ochieng A; Bassey BJ J Environ Manage; 2016 Jul; 177():365-72. PubMed ID: 27150318 [TBL] [Abstract][Full Text] [Related]
15. Ion-exchange of Pb2+, Cu2+, Zn2+, Cd2+, and Ni2+ ions from aqueous solution by Lewatit CNP 80. Pehlivan E; Altun T J Hazard Mater; 2007 Feb; 140(1-2):299-307. PubMed ID: 17045738 [TBL] [Abstract][Full Text] [Related]
16. Reutilization of waste biomass from sugarcane bagasse and orange peel to obtain carbon foams: Applications in the metal ions removal. Licona-Aguilar ÁI; Torres-Huerta AM; Domínguez-Crespo MA; Palma-Ramírez D; Conde-Barajas E; Negrete-Rodríguez MXL; Rodríguez-Salazar AE; García-Zaleta DS Sci Total Environ; 2022 Jul; 831():154883. PubMed ID: 35358521 [TBL] [Abstract][Full Text] [Related]
17. Effective adsorptive removal of Zn Abuhatab S; El-Qanni A; Al-Qalaq H; Hmoudah M; Al-Zerei W J Environ Manage; 2020 Aug; 268():110713. PubMed ID: 32510447 [TBL] [Abstract][Full Text] [Related]
18. Roles of different humin and heavy-metal resistant bacteria from composting on heavy metal removal. Wei Y; Zhao Y; Zhao X; Gao X; Zheng Y; Zuo H; Wei Z Bioresour Technol; 2020 Jan; 296():122375. PubMed ID: 31734063 [TBL] [Abstract][Full Text] [Related]
19. The interaction of heavy metals with urban soils: sorption behaviour of Cd, Cu, Cr, Pb and Zn with a typical mixed brownfield deposit. Markiewicz-Patkowska J; Hursthouse A; Przybyla-Kij H Environ Int; 2005 May; 31(4):513-21. PubMed ID: 15788192 [TBL] [Abstract][Full Text] [Related]
20. Six fruit and vegetable peel beads for the simultaneous removal of heavy metals by biosorption. Nathan RJ; Barr D; Rosengren RJ Environ Technol; 2022 May; 43(13):1935-1952. PubMed ID: 33252309 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]