These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 35143043)

  • 1. Bayesian spatiotemporal modeling on complex-valued fMRI signals via kernel convolutions.
    Yu CH; Prado R; Ombao H; Rowe D
    Biometrics; 2023 Jun; 79(2):616-628. PubMed ID: 35143043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive independent vector analysis for multi-subject complex-valued fMRI data.
    Kuang LD; Lin QH; Gong XF; Cong F; Calhoun VD
    J Neurosci Methods; 2017 Apr; 281():49-63. PubMed ID: 28214528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimizing EEG Source Reconstruction with Concurrent fMRI-Derived Spatial Priors.
    Abreu R; Soares JF; Lima AC; Sousa L; Batista S; Castelo-Branco M; Duarte JV
    Brain Topogr; 2022 May; 35(3):282-301. PubMed ID: 35142957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A multiple kernel learning approach to perform classification of groups from complex-valued fMRI data analysis: application to schizophrenia.
    Castro E; Gómez-Verdejo V; Martínez-Ramón M; Kiehl KA; Calhoun VD
    Neuroimage; 2014 Feb; 87():1-17. PubMed ID: 24225489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bayesian fMRI data analysis with sparse spatial basis function priors.
    Flandin G; Penny WD
    Neuroimage; 2007 Feb; 34(3):1108-25. PubMed ID: 17157034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bayesian analysis of fMRI data with ICA based spatial prior.
    Bathula DR; Tagare HD; Staib LH; Papademetris X; Schultz RT; Duncan JS
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 2):246-54. PubMed ID: 18982612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anatomically informed bayesian model selection for fMRI group data analysis.
    Keller M; Lavielle M; Perrot M; Roche A
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):450-7. PubMed ID: 20426143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gaussian process based independent analysis for temporal source separation in fMRI.
    Hald DH; Henao R; Winther O
    Neuroimage; 2017 May; 152():563-574. PubMed ID: 28249758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bayesian connective field modeling using a Markov Chain Monte Carlo approach.
    Invernizzi A; Haak KV; Carvalho JC; Renken RJ; Cornelissen FW
    Neuroimage; 2022 Dec; 264():119688. PubMed ID: 36280097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incorporating spatial dependence into Bayesian multiple testing of statistical parametric maps in functional neuroimaging.
    Brown DA; Lazar NA; Datta GS; Jang W; McDowell JE
    Neuroimage; 2014 Jan; 84():97-112. PubMed ID: 23981437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How to avoid mismodelling in GLM-based fMRI data analysis: cross-validated Bayesian model selection.
    Soch J; Haynes JD; Allefeld C
    Neuroimage; 2016 Nov; 141():469-489. PubMed ID: 27477536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A spectral sampling algorithm in dynamic causal modelling for resting-state fMRI.
    Xie Y; Zhang P; Zhao J
    Hum Brain Mapp; 2023 Jun; 44(8):2981-2992. PubMed ID: 36929686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A fully Bayesian approach to the parcel-based detection-estimation of brain activity in fMRI.
    Makni S; Idier J; Vincent T; Thirion B; Dehaene-Lambertz G; Ciuciu P
    Neuroimage; 2008 Jul; 41(3):941-69. PubMed ID: 18439839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A nonparametric bayesian approach to detecting spatial activation patterns in fMRI data.
    Kim S; Smyth P; Stern H
    Med Image Comput Comput Assist Interv; 2006; 9(Pt 2):217-24. PubMed ID: 17354775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sparse representation of complex-valued fMRI data based on spatiotemporal concatenation of real and imaginary parts.
    Zhang CY; Lin QH; Kuang LD; Li WX; Gong XF; Calhoun VD
    J Neurosci Methods; 2021 Mar; 351():109047. PubMed ID: 33385421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling the distribution of white matter hyperintensities due to ageing on MRI images using Bayesian inference.
    Sundaresan V; Griffanti L; Kindalova P; Alfaro-Almagro F; Zamboni G; Rothwell PM; Nichols TE; Jenkinson M
    Neuroimage; 2019 Jan; 185():434-445. PubMed ID: 30359730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial regularization of functional connectivity using high-dimensional Markov random fields.
    Liu W; Zhu P; Anderson JS; Yurgelun-Todd D; Fletcher PT
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 2):363-70. PubMed ID: 20879336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BACON: A tool for reverse inference in brain activation and alteration.
    Costa T; Manuello J; Ferraro M; Liloia D; Nani A; Fox PT; Lancaster J; Cauda F
    Hum Brain Mapp; 2021 Aug; 42(11):3343-3351. PubMed ID: 33991154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hemodynamic matrix factorization for functional magnetic resonance imaging.
    Hütel M; Antonelli M; Melbourne A; Ourselin S
    Neuroimage; 2021 May; 231():117814. PubMed ID: 33549748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SSPNet: An interpretable 3D-CNN for classification of schizophrenia using phase maps of resting-state complex-valued fMRI data.
    Lin QH; Niu YW; Sui J; Zhao WD; Zhuo C; Calhoun VD
    Med Image Anal; 2022 Jul; 79():102430. PubMed ID: 35397470
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.