These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 35143158)

  • 1. Enhancement of Boiling with Scalable Sandblasted Surfaces.
    Song Y; Wang C; Preston DJ; Su G; Rahman MM; Cha H; Seong JH; Philips B; Bucci M; Wang EN
    ACS Appl Mater Interfaces; 2022 Feb; 14(7):9788-9794. PubMed ID: 35143158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heat Transfer Characteristics of Pool Boiling with Scalable Plasma-Sprayed Aluminum Coatings.
    Ranjan A; Priy A; Ahmad I; Pathak M; Khan MK; Keshri AK
    Langmuir; 2023 May; 39(18):6337-6354. PubMed ID: 37092979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced pool-boiling heat transfer and critical heat flux on femtosecond laser processed stainless steel surfaces.
    Kruse CM; Anderson T; Wilson C; Zuhlke C; Alexander D; Gogos G; Ndao S
    Int J Heat Mass Transf; 2015 Mar; 82():109-116. PubMed ID: 30449897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microtube Surfaces for the Simultaneous Enhancement of Efficiency and Critical Heat Flux during Pool Boiling.
    Song Y; Gong S; Vaartstra G; Wang EN
    ACS Appl Mater Interfaces; 2021 Mar; 13(10):12629-12635. PubMed ID: 33683095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laser-Engineered Microcavity Surfaces with a Nanoscale Superhydrophobic Coating for Extreme Boiling Performance.
    Može M; Senegačnik M; Gregorčič P; Hočevar M; Zupančič M; Golobič I
    ACS Appl Mater Interfaces; 2020 May; 12(21):24419-24431. PubMed ID: 32352743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoparticle-Assisted Pool Boiling Heat Transfer on Micro-Pin-Fin Surfaces.
    Cao Z; Liu B; Preger C; Zhang YH; Wu Z; Messing ME; Deppert K; Wei JJ; Sundén B
    Langmuir; 2021 Jan; 37(3):1089-1101. PubMed ID: 33417766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-Tier Hierarchical Structures for Extreme Pool Boiling Heat Transfer Performance.
    Song Y; Díaz-Marín CD; Zhang L; Cha H; Zhao Y; Wang EN
    Adv Mater; 2022 Aug; 34(32):e2200899. PubMed ID: 35725240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pool Boiling Performance of Multilayer Micromeshes for Commercial High-Power Cooling.
    Tang K; Bai J; Chen S; Zhang S; Li J; Sun Y; Chen G
    Micromachines (Basel); 2021 Aug; 12(8):. PubMed ID: 34442602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enabling Highly Effective Boiling from Superhydrophobic Surfaces.
    Allred TP; Weibel JA; Garimella SV
    Phys Rev Lett; 2018 Apr; 120(17):174501. PubMed ID: 29756846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Critical heat flux enhancement in pool boiling through increased rewetting on nanopillar array surfaces.
    Nguyen TB; Liu D; Kayes MI; Wang B; Rashin N; Leu PW; Tran T
    Sci Rep; 2018 Mar; 8(1):4815. PubMed ID: 29555913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Pool-Boiling-Induced Deposition of Nanoparticles as the Transient Game Changer-A Review.
    Pereira J; Moita A; Moreira A
    Nanomaterials (Basel); 2022 Dec; 12(23):. PubMed ID: 36500893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanosecond Laser-Textured Copper Surfaces Hydrophobized with Self-Assembled Monolayers for Enhanced Pool Boiling Heat Transfer.
    Može M; Zupančič M; Steinbücher M; Golobič I; Gjerkeš H
    Nanomaterials (Basel); 2022 Nov; 12(22):. PubMed ID: 36432318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of inter-nanowire distance in metal nanowires on pool boiling heat transfer characteristics.
    Udaya Kumar G; Suresh S; Thansekhar MR; Halpati D
    J Colloid Interface Sci; 2018 Dec; 532():218-230. PubMed ID: 30081267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of Pool Boiling Heat Transfer Using Aligned Silicon Nanowire Arrays.
    Shim DI; Choi G; Lee N; Kim T; Kim BS; Cho HH
    ACS Appl Mater Interfaces; 2017 May; 9(20):17595-17602. PubMed ID: 28470059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrascalable Three-Tier Hierarchical Nanoengineered Surfaces for Optimized Boiling.
    Li J; Fu W; Zhang B; Zhu G; Miljkovic N
    ACS Nano; 2019 Dec; 13(12):14080-14093. PubMed ID: 31808673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laser Treatment of Surfaces for Pool Boiling Heat Transfer Enhancement.
    Orman ŁJ; Radek N; Pietraszek J; Wojtkowiak J; Szczepaniak M
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36836995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Nanoparticle Size and Concentration on Pool Boiling Heat Transfer with TiO
    Hadžić A; Može M; Arhar K; Zupančič M; Golobič I
    Nanomaterials (Basel); 2022 Jul; 12(15):. PubMed ID: 35957045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrophilic and Hydrophobic Nanostructured Copper Surfaces for Efficient Pool Boiling Heat Transfer with Water, Water/Butanol Mixtures and Novec 649.
    Može M; Vajc V; Zupančič M; Golobič I
    Nanomaterials (Basel); 2021 Nov; 11(12):. PubMed ID: 34947565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Boiling Heat Transfer with a Well-Ordered Microporous Architecture.
    Pham QN; Zhang S; Hao S; Montazeri K; Lin CH; Lee J; Mohraz A; Won Y
    ACS Appl Mater Interfaces; 2020 Apr; 12(16):19174-19183. PubMed ID: 32239917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A review on boiling heat transfer enhancement with nanofluids.
    Barber J; Brutin D; Tadrist L
    Nanoscale Res Lett; 2011 Apr; 6(1):280. PubMed ID: 21711794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.