These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 35143180)

  • 21. Near infrared optically responsive Ag-Cu bimetallic 2D nanocrystals with controllable spatial structures.
    Chen J; Xu W; Li X; Sun L; Zhong Z; Zhang Z; Tang Y
    J Colloid Interface Sci; 2022 Dec; 628(Pt B):660-669. PubMed ID: 36027776
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Polymer-supported bimetallic Ag@AgAu nanocomposites: synthesis and catalytic properties.
    Zhang S; Wu W; Xiao X; Zhou J; Xu J; Ren F; Jiang C
    Chem Asian J; 2012 Aug; 7(8):1781-8. PubMed ID: 22700032
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Facile synthesis of bimetallic Cu-Ag nanoparticles under microwave irradiation and their oxidation resistance.
    Chen Z; Mochizuki D; Maitani MM; Wada Y
    Nanotechnology; 2013 Jul; 24(26):265602. PubMed ID: 23732107
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Catalytic activity of Pd-doped Cu nanoparticles for hydrogenation as a single-atom-alloy catalyst.
    Cao X; Fu Q; Luo Y
    Phys Chem Chem Phys; 2014 May; 16(18):8367-75. PubMed ID: 24658397
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A highly sensitive non-enzymatic glucose sensor based on bimetallic Cu-Ag superstructures.
    Li H; Guo CY; Xu CL
    Biosens Bioelectron; 2015 Jan; 63():339-346. PubMed ID: 25113052
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design of Copper-Based Bimetallic Nanoparticles for Carbon Dioxide Adsorption and Activation.
    Dean J; Yang Y; Austin N; Veser G; Mpourmpakis G
    ChemSusChem; 2018 Apr; 11(7):1169-1178. PubMed ID: 29377637
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Remarkable Enhancement of Catalytic Reduction of Nitrophenol Isomers by Decoration of Ni Nanosheets with Cu Species.
    Avalos-Ballester V; Acosta B; Smolentseva E
    ACS Omega; 2024 Sep; 9(36):37981-37994. PubMed ID: 39281961
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Selective antifungal and antibacterial activities of Ag-Cu and Cu-Ag core-shell nanostructures synthesized in-situ PVA.
    Sabira SF; Kasabe AM; Mane PC; Chaudhari RD; Adhyapak PV
    Nanotechnology; 2020 Nov; 31(48):485705. PubMed ID: 32554903
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrochemical Reduction of CO
    Zhang S; Zhao S; Qu D; Liu X; Wu Y; Chen Y; Huang W
    Small; 2021 Sep; 17(37):e2102293. PubMed ID: 34342137
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis, structural characterization and catalytic application of citrate-stabilized monometallic and bimetallic palladium@copper nanoparticles in microbial anti-activities.
    Ullah I; Khan K; Sohail M; Ullah K; Ullah A; Shaheen S
    Int J Nanomedicine; 2017; 12():8735-8747. PubMed ID: 29276383
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Catalytic reduction of 4-nitrophenol and methylene blue pollutants in water by copper and nickel nanoparticles decorated polymer sponges.
    Kamal T; Asiri AM; Ali N
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Nov; 261():120019. PubMed ID: 34126398
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Performance of Preformed Au/Cu Nanoclusters Deposited on MgO Powders in the Catalytic Reduction of 4-Nitrophenol in Solution.
    Cai R; Ellis PR; Yin J; Liu J; Brown CM; Griffin R; Chang G; Yang D; Ren J; Cooke K; Bishop PT; Theis W; Palmer RE
    Small; 2018 Mar; 14(13):e1703734. PubMed ID: 29412512
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multiply twinned AgNi alloy nanoparticles as highly active catalyst for multiple reduction and degradation reactions.
    Kumar M; Deka S
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):16071-81. PubMed ID: 25171089
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Single atom alloy surface analogs in Pd0.18Cu15 nanoparticles for selective hydrogenation reactions.
    Boucher MB; Zugic B; Cladaras G; Kammert J; Marcinkowski MD; Lawton TJ; Sykes EC; Flytzani-Stephanopoulos M
    Phys Chem Chem Phys; 2013 Aug; 15(29):12187-96. PubMed ID: 23793350
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tailoring Morphology of Cu-Ag Nanocrescents and Core-Shell Nanocrystals Guided by a Thermodynamic Model.
    Osowiecki WT; Ye X; Satish P; Bustillo KC; Clark EL; Alivisatos AP
    J Am Chem Soc; 2018 Jul; 140(27):8569-8577. PubMed ID: 29909616
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ag nanoparticles anchored on NiO octahedrons (Ag/NiO composite): An efficient catalyst for reduction of nitro substituted phenols and colouring dyes.
    Bhatia P; Nath M
    Chemosphere; 2022 Mar; 290():133188. PubMed ID: 34906527
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dopamine-Directed In-Situ and One-Step Synthesis of Au@Ag Core-Shell Nanoparticles Immobilized to a Metal-Organic Framework for Synergistic Catalysis.
    Huang P; Ma W; Yu P; Mao L
    Chem Asian J; 2016 Oct; 11(19):2705-2709. PubMed ID: 27167362
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fabrication of fully covered Cu-Ag core-shell nanoparticles by compound method and anti-oxidation performance.
    Huang Y; Wu F; Zhou Z; Zhou L; Liu H
    Nanotechnology; 2020 Apr; 31(17):175601. PubMed ID: 31910401
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis and characterization of novel plasmonic Ag/AgX-CNTs (X = Cl, Br, I) nanocomposite photocatalysts and synergetic degradation of organic pollutant under visible light.
    Shi H; Chen J; Li G; Nie X; Zhao H; Wong PK; An T
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):6959-67. PubMed ID: 23875915
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ag-Sn bimetallic nanoparticles paste for high temperature service in power devices.
    Yu F; Wang K; Liu J; Fu X; Chen H; Li M
    Nanotechnology; 2020 Aug; 31(34):345204. PubMed ID: 32403094
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.