These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 35143298)

  • 1. An autonomously swimming biohybrid fish designed with human cardiac biophysics.
    Lee KY; Park SJ; Matthews DG; Kim SL; Marquez CA; Zimmerman JF; Ardoña HAM; Kleber AG; Lauder GV; Parker KK
    Science; 2022 Feb; 375(6581):639-647. PubMed ID: 35143298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A dual caudal-fin miniature robotic fish with an integrated oscillation and jet propulsive mechanism.
    Liao P; Zhang S; Sun D
    Bioinspir Biomim; 2018 Mar; 13(3):036007. PubMed ID: 29359705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding Fish Linear Acceleration Using an Undulatory Biorobotic Model with Soft Fluidic Elastomer Actuated Morphing Median Fins.
    Wen L; Ren Z; Di Santo V; Hu K; Yuan T; Wang T; Lauder GV
    Soft Robot; 2018 Aug; 5(4):375-388. PubMed ID: 29634444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pectoral fin kinematics and motor patterns are shaped by fin ray mechanosensation during steady swimming in
    Aiello BR; Olsen AM; Mathis CE; Westneat MW; Hale ME
    J Exp Biol; 2020 Jan; 223(Pt 2):. PubMed ID: 31862848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Note: Dynamic analysis of a robotic fish motion with a caudal fin with vertical phase differences.
    Yun D; Kim KS; Kim S; Kyung J; Lee S
    Rev Sci Instrum; 2013 Mar; 84(3):036108. PubMed ID: 23556860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fins as Mechanosensors for Movement and Touch-Related Behaviors.
    Aiello BR; Hardy AR; Westneat MW; Hale ME
    Integr Comp Biol; 2018 Nov; 58(5):844-859. PubMed ID: 29917043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fish-like three-dimensional swimming with an autonomous, multi-fin, and biomimetic robot.
    Berlinger F; Saadat M; Haj-Hariri H; Lauder GV; Nagpal R
    Bioinspir Biomim; 2021 Feb; 16(2):. PubMed ID: 33264757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal chordwise stiffness profiles of self-propelled flapping fins.
    Kancharala AK; Philen MK
    Bioinspir Biomim; 2016 Sep; 11(5):056016. PubMed ID: 27627992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Passive robotic models of propulsion by the bodies and caudal fins of fish.
    Lauder GV; Flammang B; Alben S
    Integr Comp Biol; 2012 Nov; 52(5):576-87. PubMed ID: 22740513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolutionary multiobjective design of a flexible caudal fin for robotic fish.
    Clark AJ; Tan X; McKinley PK
    Bioinspir Biomim; 2015 Nov; 10(6):065006. PubMed ID: 26601975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phototactic guidance of a tissue-engineered soft-robotic ray.
    Park SJ; Gazzola M; Park KS; Park S; Di Santo V; Blevins EL; Lind JU; Campbell PH; Dauth S; Capulli AK; Pasqualini FS; Ahn S; Cho A; Yuan H; Maoz BM; Vijaykumar R; Choi JW; Deisseroth K; Lauder GV; Mahadevan L; Parker KK
    Science; 2016 Jul; 353(6295):158-62. PubMed ID: 27387948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fin-fin interactions during locomotion in a simplified biomimetic fish model.
    Matthews DG; Lauder GV
    Bioinspir Biomim; 2021 Sep; 16(4):. PubMed ID: 34015781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fin and body neuromuscular coordination changes during walking and swimming in
    Foster KL; Dhuper M; Standen EM
    J Exp Biol; 2018 Sep; 221(Pt 17):. PubMed ID: 29967218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomimetic and bio-inspired robotics in electric fish research.
    Neveln ID; Bai Y; Snyder JB; Solberg JR; Curet OM; Lynch KM; MacIver MA
    J Exp Biol; 2013 Jul; 216(Pt 13):2501-14. PubMed ID: 23761475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional morphology and hydrodynamics of backward swimming in bluegill sunfish, Lepomis macrochirus.
    Flammang BE; Lauder GV
    Zoology (Jena); 2016 Oct; 119(5):414-420. PubMed ID: 27291816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechatronic design and locomotion control of a robotic thunniform swimmer for fast cruising.
    Hu Y; Liang J; Wang T
    Bioinspir Biomim; 2015 Mar; 10(2):026006. PubMed ID: 25822708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bio-inspired aquatic robotics by untethered piezohydroelastic actuation.
    Cen L; Erturk A
    Bioinspir Biomim; 2013 Mar; 8(1):016006. PubMed ID: 23348365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of non-uniform stiffness on the swimming performance of a passively-flexing, fish-like foil model.
    Lucas KN; Thornycroft PJ; Gemmell BJ; Colin SP; Costello JH; Lauder GV
    Bioinspir Biomim; 2015 Oct; 10(5):056019. PubMed ID: 26447541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a vortex generator to perturb fish locomotion.
    Seth D; Flammang BE; Lauder GV; Tangorra JL
    J Exp Biol; 2017 Mar; 220(Pt 6):959-963. PubMed ID: 28082612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A multi-body dynamics based numerical modelling tool for solving aquatic biomimetic problems.
    Li R; Xiao Q; Liu Y; Hu J; Li L; Li G; Liu H; Hu K; Wen L
    Bioinspir Biomim; 2018 Jul; 13(5):056001. PubMed ID: 29916395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.