BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 35143392)

  • 1. Predicting Cochlear Implant Electrode Placement Using Monopolar, Three-Point and Four-Point Impedance Measurements.
    Sijgers L; Huber A; Tabibi S; Grosse J; Roosli C; Boyle P; Koka K; Dillier N; Pfiffner F; Dalbert A
    IEEE Trans Biomed Eng; 2022 Aug; 69(8):2533-2544. PubMed ID: 35143392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of modiolar proximity through bipolar impedance measurements.
    Pile J; Sweeney AD; Kumar S; Simaan N; Wanna GB
    Laryngoscope; 2017 Jun; 127(6):1413-1419. PubMed ID: 27557458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Four-Point Impedance Changes After Cochlear Implantation for Lateral Wall and Perimodiolar Implants.
    Razmovski T; Bester C; Collins A; Tan E; O'Leary SJ
    Otol Neurotol; 2022 Dec; 43(10):e1107-e1114. PubMed ID: 36351225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of Perimodiolar Electrodes: Imaging and Electrophysiological Outcomes.
    Mewes A; Brademann G; Hey M
    Otol Neurotol; 2020 Aug; 41(7):e934-e944. PubMed ID: 32658111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of electrode impedance and its subcomponents for lateral wall, mid-scala, and perimodiolar electrodes in cochlear implants.
    Saoji AA; Graham M; Stein A; Koka K
    Cochlear Implants Int; 2022 Mar; 23(2):87-94. PubMed ID: 34895078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robotic pullback technique of a precurved cochlear-implant electrode array using real-time impedance sensing feedback.
    Riojas KE; Bruns TL; Granna J; Webster RJ; Labadie RF
    Int J Comput Assist Radiol Surg; 2023 Mar; 18(3):413-421. PubMed ID: 36331796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of Extracochlear Electrodes in Cochlear Implants with Electric Field Imaging/Transimpedance Measurements: A Human Cadaver Study.
    de Rijk SR; Tam YC; Carlyon RP; Bance ML
    Ear Hear; 2020; 41(5):1196-1207. PubMed ID: 31923041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Effect of Electrode Position on Behavioral and Electrophysiologic Measurements in Perimodiolar Cochlear Implants.
    Collins A; Foghsgaard S; Druce E; Margani V; Mejia O; O'Leary S
    Otol Neurotol; 2024 Mar; 45(3):238-244. PubMed ID: 38238914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Impedance of cochlear implant electrode array in scalae tympani].
    Du Q; Wang ZM
    Zhonghua Yi Xue Za Zhi; 2008 Dec; 88(46):3302-4. PubMed ID: 19159560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Importance of Perimodiolar Electrode Position for Psychoacoustic Discrimination in Cochlear Implantation.
    Ramos Macias A; Perez Zaballos MT; Ramos de Miguel A; Cervera Paz J
    Otol Neurotol; 2017 Dec; 38(10):e429-e437. PubMed ID: 29135866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intraoperative Impedance-Based Estimation of Cochlear Implant Electrode Array Insertion Depth.
    Aebischer P; Meyer S; Caversaccio M; Wimmer W
    IEEE Trans Biomed Eng; 2021 Feb; 68(2):545-555. PubMed ID: 32746052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impedance Measures During in vitro Cochlear Implantation Predict Array Positioning.
    Giardina CK; Krause ES; Koka K; Fitzpatrick DC
    IEEE Trans Biomed Eng; 2018 Feb; 65(2):327-335. PubMed ID: 29346102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of initial switch-on within 24 hours of cochlear implantation using slim modiolar electrodes.
    Sunwoo W; Jeon HW; Choi BY
    Sci Rep; 2021 Nov; 11(1):22809. PubMed ID: 34815432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of Translocation of Cochlear Implant Electrode Arrays by Intracochlear Impedance Measurements.
    Dong Y; Briaire JJ; Siebrecht M; Stronks HC; Frijns JHM
    Ear Hear; 2021; 42(5):1397-1404. PubMed ID: 33974777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrocochleographic Patterns Predicting Increased Impedances and Hearing Loss after Cochlear Implantation.
    Bester C; Dalbert A; Collins A; Razmovski T; Gerard JM; O'Leary S
    Ear Hear; 2023 Jul-Aug 01; 44(4):710-720. PubMed ID: 36550618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modifying cochlear implant design: advantages of placing a return electrode in the modiolus.
    Ho SY; Wiet RJ; Richter CP
    Otol Neurotol; 2004 Jul; 25(4):497-503. PubMed ID: 15241228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increase in cochlear implant electrode impedances with the use of electrical stimulation.
    Saoji AA; Adkins WJ; Olund AP; Graham M; Patel NS; Neff BA; Carlson ML; Driscoll CLW
    Int J Audiol; 2020 Nov; 59(11):881-888. PubMed ID: 32749178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of age, electrode array, and time on cochlear implant impedances.
    Velandia S; Martinez D; Goncalves S; Pena S; Bas E; Ein L; Prentiss S; Telischi F; Angeli S; Dinh CT
    Cochlear Implants Int; 2020 Nov; 21(6):344-352. PubMed ID: 32640889
    [No Abstract]   [Full Text] [Related]  

  • 19. Effect of Electrode to Modiolus Distance on Electrophysiological and Psychophysical Parameters in CI Patients With Perimodiolar and Lateral Electrode Arrays.
    Degen CV; Büchner A; Kludt E; Lenarz T
    Otol Neurotol; 2020 Oct; 41(9):e1091-e1097. PubMed ID: 32925843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impedance Changes and Fibrous Tissue Growth after Cochlear Implantation Are Correlated and Can Be Reduced Using a Dexamethasone Eluting Electrode.
    Wilk M; Hessler R; Mugridge K; Jolly C; Fehr M; Lenarz T; Scheper V
    PLoS One; 2016; 11(2):e0147552. PubMed ID: 26840740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.