These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 35143401)

  • 1. A Proximal Neurodynamic Network With Fixed-Time Convergence for Equilibrium Problems and Its Applications.
    Ju X; Li C; Che H; He X; Feng G
    IEEE Trans Neural Netw Learn Syst; 2023 Oct; 34(10):7500-7514. PubMed ID: 35143401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Novel Fixed-Time Converging Neurodynamic Approach to Mixed Variational Inequalities and Applications.
    Ju X; Hu D; Li C; He X; Feng G
    IEEE Trans Cybern; 2022 Dec; 52(12):12942-12953. PubMed ID: 34347618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Fixed-Time Proximal Gradient Neurodynamic Network With Time-Varying Coefficients for Composite Optimization Problems and Sparse Optimization Problems With Log-Sum Function.
    Xu J; Li C; He X; Wen H; Ju X
    IEEE Trans Neural Netw Learn Syst; 2024 Aug; PP():. PubMed ID: 39141464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A proximal neurodynamic model for solving inverse mixed variational inequalities.
    Ju X; Li C; He X; Feng G
    Neural Netw; 2021 Jun; 138():1-9. PubMed ID: 33610091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A neurodynamic approach to convex optimization problems with general constraint.
    Qin S; Liu Y; Xue X; Wang F
    Neural Netw; 2016 Dec; 84():113-124. PubMed ID: 27718390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurodynamic optimization approaches with finite/fixed-time convergence for absolute value equations.
    Ju X; Yang X; Feng G; Che H
    Neural Netw; 2023 Aug; 165():971-981. PubMed ID: 37454612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distributed Neurodynamic Models for Solving a Class of System of Nonlinear Equations.
    Han X; He X; Ju X; Che H; Huang T
    IEEE Trans Neural Netw Learn Syst; 2023 Nov; PP():. PubMed ID: 37956013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel projection neurodynamic approaches for constrained convex optimization.
    Zhao Y; Liao X; He X
    Neural Netw; 2022 Jun; 150():336-349. PubMed ID: 35344705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two Novel Noise-Suppression Projection Neural Networks With Fixed-Time Convergence for Variational Inequalities and Applications.
    Yang X; Ju X; Shi P; Wen G
    IEEE Trans Neural Netw Learn Syst; 2023 Oct; PP():. PubMed ID: 37819816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel predefined-time neurodynamic approach for mixed variational inequality problems and applications.
    Zheng J; Ju X; Zhang N; Xu D
    Neural Netw; 2024 Jun; 174():106247. PubMed ID: 38518707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A proximal neurodynamic model for a system of non-linear inverse mixed variational inequalities.
    Upadhyay A; Pandey R
    Neural Netw; 2024 Aug; 176():106323. PubMed ID: 38653123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A second-order accelerated neurodynamic approach for distributed convex optimization.
    Jiang X; Qin S; Xue X; Liu X
    Neural Netw; 2022 Feb; 146():161-173. PubMed ID: 34864224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fixed-Time Stable Neurodynamic Flow to Sparse Signal Recovery via Nonconvex L1-β2-Norm.
    Zhao Y; Liao X; He X
    Neural Comput; 2022 Jul; 34(8):1727-1755. PubMed ID: 35798330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel neural network for variational inequalities with linear and nonlinear constraints.
    Gao XB; Liao LZ; Qi L
    IEEE Trans Neural Netw; 2005 Nov; 16(6):1305-17. PubMed ID: 16342476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Centralized and Collective Neurodynamic Optimization Approaches for Sparse Signal Reconstruction via L₁-Minimization.
    Zhao Y; Liao X; He X; Tang R
    IEEE Trans Neural Netw Learn Syst; 2022 Dec; 33(12):7488-7501. PubMed ID: 34156950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neurodynamic approaches for sparse recovery problem with linear inequality constraints.
    Yang J; He X; Huang T
    Neural Netw; 2022 Nov; 155():592-601. PubMed ID: 36208616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neurodynamic approaches for multi-agent distributed optimization.
    Guo L; Korovin I; Gorbachev S; Shi X; Gorbacheva N; Cao J
    Neural Netw; 2024 Jan; 169():673-684. PubMed ID: 37972511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Neurodynamic Model to Solve Nonlinear Pseudo-Monotone Projection Equation and Its Applications.
    Eshaghnezhad M; Effati S; Mansoori A
    IEEE Trans Cybern; 2017 Oct; 47(10):3050-3062. PubMed ID: 27705876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Inertial Projection Neural Network for Solving Variational Inequalities.
    Xing He ; Tingwen Huang ; Junzhi Yu ; Chuandong Li ; Chaojie Li
    IEEE Trans Cybern; 2017 Mar; 47(3):809-814. PubMed ID: 26887026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solving pseudomonotone variational inequalities and pseudoconvex optimization problems using the projection neural network.
    Hu X; Wang J
    IEEE Trans Neural Netw; 2006 Nov; 17(6):1487-99. PubMed ID: 17131663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.