These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 35143610)

  • 1. blitzGSEA: efficient computation of gene set enrichment analysis through gamma distribution approximation.
    Lachmann A; Xie Z; Ma'ayan A
    Bioinformatics; 2022 Apr; 38(8):2356-2357. PubMed ID: 35143610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GSEApy: a comprehensive package for performing gene set enrichment analysis in Python.
    Fang Z; Liu X; Peltz G
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36426870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential Gene Set Enrichment Analysis: a statistical approach to quantify the relative enrichment of two gene sets.
    Joly JH; Lowry WE; Graham NA
    Bioinformatics; 2021 Jan; 36(21):5247-5254. PubMed ID: 32692836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GSEA-InContext: identifying novel and common patterns in expression experiments.
    Powers RK; Goodspeed A; Pielke-Lombardo H; Tan AC; Costello JC
    Bioinformatics; 2018 Jul; 34(13):i555-i564. PubMed ID: 29950010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. rapidGSEA: Speeding up gene set enrichment analysis on multi-core CPUs and CUDA-enabled GPUs.
    Hundt C; Hildebrandt A; Schmidt B
    BMC Bioinformatics; 2016 Sep; 17(1):394. PubMed ID: 27663265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parallelized calculation of permutation tests.
    Ekvall M; Höhle M; Käll L
    Bioinformatics; 2021 Apr; 36(22-23):5392-5397. PubMed ID: 33289531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GSA-Lightning: ultra-fast permutation-based gene set analysis.
    Chang BH; Tian W
    Bioinformatics; 2016 Oct; 32(19):3029-31. PubMed ID: 27296982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FUNNEL-GSEA: FUNctioNal ELastic-net regression in time-course gene set enrichment analysis.
    Zhang Y; Topham DJ; Thakar J; Qiu X
    Bioinformatics; 2017 Jul; 33(13):1944-1952. PubMed ID: 28334094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MEANS: python package for Moment Expansion Approximation, iNference and Simulation.
    Fan S; Geissmann Q; Lakatos E; Lukauskas S; Ale A; Babtie AC; Kirk PD; Stumpf MP
    Bioinformatics; 2016 Sep; 32(18):2863-5. PubMed ID: 27153663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. hacksig: a unified and tidy R framework to easily compute gene expression signature scores.
    Carenzo A; Pistore F; Serafini MS; Lenoci D; Licata AG; De Cecco L
    Bioinformatics; 2022 May; 38(10):2940-2942. PubMed ID: 35561166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ADAGE signature analysis: differential expression analysis with data-defined gene sets.
    Tan J; Huyck M; Hu D; Zelaya RA; Hogan DA; Greene CS
    BMC Bioinformatics; 2017 Nov; 18(1):512. PubMed ID: 29166858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ebGSEA: an improved Gene Set Enrichment Analysis method for Epigenome-Wide-Association Studies.
    Dong D; Tian Y; Zheng SC; Teschendorff AE
    Bioinformatics; 2019 Sep; 35(18):3514-3516. PubMed ID: 30715212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Moment based gene set tests.
    Larson JL; Owen AB
    BMC Bioinformatics; 2015 Apr; 16():132. PubMed ID: 25928861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EBIC: an evolutionary-based parallel biclustering algorithm for pattern discovery.
    Orzechowski P; Sipper M; Huang X; Moore JH
    Bioinformatics; 2018 Nov; 34(21):3719-3726. PubMed ID: 29790909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fewer permutations, more accurate P-values.
    Knijnenburg TA; Wessels LF; Reinders MJ; Shmulevich I
    Bioinformatics; 2009 Jun; 25(12):i161-8. PubMed ID: 19477983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A2Sign: Agnostic Algorithms for Signatures-a universal method for identifying molecular signatures from transcriptomic datasets prior to cell-type deconvolution.
    Boldina G; Fogel P; Rocher C; Bettembourg C; Luta G; Augé F
    Bioinformatics; 2022 Jan; 38(4):1015-1021. PubMed ID: 34788798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SJARACNe: a scalable software tool for gene network reverse engineering from big data.
    Khatamian A; Paull EO; Califano A; Yu J
    Bioinformatics; 2019 Jun; 35(12):2165-2166. PubMed ID: 30388204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BubbleGUM: automatic extraction of phenotype molecular signatures and comprehensive visualization of multiple Gene Set Enrichment Analyses.
    Spinelli L; Carpentier S; Montañana Sanchis F; Dalod M; Vu Manh TP
    BMC Genomics; 2015 Oct; 16():814. PubMed ID: 26481321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genefu: an R/Bioconductor package for computation of gene expression-based signatures in breast cancer.
    Gendoo DM; Ratanasirigulchai N; Schröder MS; Paré L; Parker JS; Prat A; Haibe-Kains B
    Bioinformatics; 2016 Apr; 32(7):1097-9. PubMed ID: 26607490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BAGSE: a Bayesian hierarchical model approach for gene set enrichment analysis.
    Hukku A; Quick C; Luca F; Pique-Regi R; Wen X
    Bioinformatics; 2020 Mar; 36(6):1689-1695. PubMed ID: 31702789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.