BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 35143783)

  • 1. Quantitative analysis of the interaction of ethanol metabolism with gluconeogenesis and fatty acid oxidation in the perfused liver of fasted rats.
    Chalhoub ER; Belovich JM
    Arch Biochem Biophys; 2022 Mar; 718():109148. PubMed ID: 35143783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The interaction between the cytosolic pyridine nucleotide redox potential and gluconeogenesis from lactate/pyruvate in isolated rat hepatocytes. Implications for investigations of hormone action.
    Sistare FD; Haynes RC
    J Biol Chem; 1985 Oct; 260(23):12748-53. PubMed ID: 4044607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A computer model of gluconeogenesis and lipid metabolism in the perfused liver.
    Chalhoub E; Hanson RW; Belovich JM
    Am J Physiol Endocrinol Metab; 2007 Dec; 293(6):E1676-86. PubMed ID: 17911349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of oxamate with the gluconeogenic pathway in rat liver.
    Martin-Requero A; Ayuso MS; Parrilla R
    Arch Biochem Biophys; 1986 Apr; 246(1):114-27. PubMed ID: 3963816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterogenic response of the liver parenchyma to ethanol studied in the bivascularly perfused rat liver.
    Lopez CH; Constantin J; Gimenes D; Suzuki-Kemmelmeier F; Bracht A
    Mol Cell Biochem; 2004 Mar; 258(1-2):155-62. PubMed ID: 15030180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ethanol metabolism and lipid synthesis by isolated liver cells from fed rats.
    Selmer J; Grunnet N
    Biochim Biophys Acta; 1976 Mar; 428(1):123-37. PubMed ID: 1260014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thyroid hormone and dehydroepiandrosterone permit gluconeogenic hormone responses in hepatocytes.
    Kneer N; Lardy H
    Arch Biochem Biophys; 2000 Mar; 375(1):145-53. PubMed ID: 10683260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence that the flux control coefficient of the respiratory chain is high during gluconeogenesis from lactate in hepatocytes from starved rats. Implications for the hormonal control of gluconeogenesis and action of hypoglycaemic agents.
    Pryor HJ; Smyth JE; Quinlan PT; Halestrap AP
    Biochem J; 1987 Oct; 247(2):449-57. PubMed ID: 3426547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The malate/aspartate shuttle and pyruvate kinase as targets involved in the stimulation of gluconeogenesis by phenylephrine.
    Leverve XM; Verhoeven AJ; Groen AK; Meijer AJ; Tager JM
    Eur J Biochem; 1986 Mar; 155(3):551-6. PubMed ID: 3956499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low metformin causes a more oxidized mitochondrial NADH/NAD redox state in hepatocytes and inhibits gluconeogenesis by a redox-independent mechanism.
    Alshawi A; Agius L
    J Biol Chem; 2019 Feb; 294(8):2839-2853. PubMed ID: 30591586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of peripheral ketolytic deficiency on hepatic ketogenesis and gluconeogenesis during the transition to birth.
    Cotter DG; Ercal B; d'Avignon DA; Dietzen DJ; Crawford PA
    J Biol Chem; 2013 Jul; 288(27):19739-49. PubMed ID: 23689508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reciprocal changes in gluconeogenesis and ureagenesis induced by fatty acid oxidation.
    Martín-Requero A; Ciprés G; Rivas T; Ayuso MS; Parrilla R
    Metabolism; 1993 Dec; 42(12):1573-82. PubMed ID: 8246772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acute and chronic ethanol treatment in vivo increases malate-aspartate shuttle capacity in perfused rat liver.
    Sugano T; Handler JA; Yoshihara H; Kizaki Z; Thurman RG
    J Biol Chem; 1990 Dec; 265(35):21549-53. PubMed ID: 2254313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Operation and energy dependence of the reducing-equivalent shuttles during lactate metabolism by isolated hepatocytes.
    Berry MN; Phillips JW; Gregory RB; Grivell AR; Wallace PG
    Biochim Biophys Acta; 1992 Sep; 1136(3):223-30. PubMed ID: 1520699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stimulation by alpha-adrenergic agonists of Ca2+ fluxes, mitochondrial oxidation and gluconeogenesis in perfused rat liver.
    Taylor WM; Reinhart PH; Bygrave FL
    Biochem J; 1983 Jun; 212(3):555-65. PubMed ID: 6882384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-invasive tracing of liver intermediary metabolism in normal subjects and in moderately hyperglycaemic NIDDM subjects. Evidence against increased gluconeogenesis and hepatic fatty acid oxidation in NIDDM.
    Diraison F; Large V; Brunengraber H; Beylot M
    Diabetologia; 1998 Feb; 41(2):212-20. PubMed ID: 9498656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Abolition of the inhibitory effect of ethanol oxidation on gluconeogenesis from lactate by asparagine or low concentrations of ammonia.
    Efthivoulou MA; Phillips JW; Berry MN
    Biochim Biophys Acta; 1995 Jun; 1244(2-3):303-10. PubMed ID: 7599148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of ethanol on urinary acidification and on gluconeogenesis by isolated renal tubules.
    Crabb DW; Sidhu R
    Metabolism; 1993 Oct; 42(10):1249-54. PubMed ID: 8412736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracellular redox state and control of gluconeogenesis in perfused chicken liver.
    Sugano T; Shiota M; Khono H; Shimada M
    J Biochem; 1982 Jun; 91(6):1917-29. PubMed ID: 7118853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of the hepatocellular redox state in the hepatic triglyceride accumulation following acute ethanol administration.
    Ryle PR; Chakraborty J; Thomson AD
    Biochem Pharmacol; 1986 Sep; 35(18):3159-64. PubMed ID: 3753521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.