These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 35143940)

  • 1. Reactivation of γ-globin expression using a minicircle DNA system to treat β-thalassemia.
    Ma SP; Gao XX; Zhou GQ; Zhang HK; Yang JM; Wang WJ; Song XM; Chen HY; Lu DR
    Gene; 2022 Apr; 820():146289. PubMed ID: 35143940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of CRISPR/Cas9 Delivery to Human Hematopoietic Stem and Progenitor Cells for Therapeutic Genomic Rearrangements.
    Lattanzi A; Meneghini V; Pavani G; Amor F; Ramadier S; Felix T; Antoniani C; Masson C; Alibeu O; Lee C; Porteus MH; Bao G; Amendola M; Mavilio F; Miccio A
    Mol Ther; 2019 Jan; 27(1):137-150. PubMed ID: 30424953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeted deletion of BCL11A gene by CRISPR-Cas9 system for fetal hemoglobin reactivation: A promising approach for gene therapy of beta thalassemia disease.
    Khosravi MA; Abbasalipour M; Concordet JP; Berg JV; Zeinali S; Arashkia A; Azadmanesh K; Buch T; Karimipoor M
    Eur J Pharmacol; 2019 Jul; 854():398-405. PubMed ID: 31039344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptional Repressor BCL11A in Erythroid Cells.
    Zheng G; Orkin SH
    Adv Exp Med Biol; 2024; 1459():199-215. PubMed ID: 39017845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reactivation of γ-globin in adult β-YAC mice after ex vivo and in vivo hematopoietic stem cell genome editing.
    Li C; Psatha N; Sova P; Gil S; Wang H; Kim J; Kulkarni C; Valensisi C; Hawkins RD; Stamatoyannopoulos G; Lieber A
    Blood; 2018 Jun; 131(26):2915-2928. PubMed ID: 29789357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR/Cas9-based multiplex genome editing of BCL11A and HBG efficiently induces fetal hemoglobin expression.
    Han Y; Tan X; Jin T; Zhao S; Hu L; Zhang W; Kurita R; Nakamura Y; Liu J; Li D; Zhang Z; Fang X; Huang S
    Eur J Pharmacol; 2022 Mar; 918():174788. PubMed ID: 35093321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Therapeutic base editing of human hematopoietic stem cells.
    Zeng J; Wu Y; Ren C; Bonanno J; Shen AH; Shea D; Gehrke JM; Clement K; Luk K; Yao Q; Kim R; Wolfe SA; Manis JP; Pinello L; Joung JK; Bauer DE
    Nat Med; 2020 Apr; 26(4):535-541. PubMed ID: 32284612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epigenetic inactivation of ERF reactivates γ-globin expression in β-thalassemia.
    Bao X; Zhang X; Wang L; Wang Z; Huang J; Zhang Q; Ye Y; Liu Y; Chen D; Zuo Y; Liu Q; Xu P; Huang B; Fang J; Lao J; Feng X; Li Y; Kurita R; Nakamura Y; Yu W; Ju C; Huang C; Mohandas N; Li D; Zhao C; Xu X
    Am J Hum Genet; 2021 Apr; 108(4):709-721. PubMed ID: 33735615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly efficient therapeutic gene editing of human hematopoietic stem cells.
    Wu Y; Zeng J; Roscoe BP; Liu P; Yao Q; Lazzarotto CR; Clement K; Cole MA; Luk K; Baricordi C; Shen AH; Ren C; Esrick EB; Manis JP; Dorfman DM; Williams DA; Biffi A; Brugnara C; Biasco L; Brendel C; Pinello L; Tsai SQ; Wolfe SA; Bauer DE
    Nat Med; 2019 May; 25(5):776-783. PubMed ID: 30911135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The new self-inactivating lentiviral vector for thalassemia gene therapy combining two HPFH activating elements corrects human thalassemic hematopoietic stem cells.
    Papanikolaou E; Georgomanoli M; Stamateris E; Panetsos F; Karagiorga M; Tsaftaridis P; Graphakos S; Anagnou NP
    Hum Gene Ther; 2012 Jan; 23(1):15-31. PubMed ID: 21875313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disruption of SOX6 gene using CRISPR/Cas9 technology for gamma-globin reactivation: An approach towards gene therapy of β-thalassemia.
    Shariati L; Rohani F; Heidari Hafshejani N; Kouhpayeh S; Boshtam M; Mirian M; Rahimmanesh I; Hejazi Z; Modarres M; Pieper IL; Khanahmad H
    J Cell Biochem; 2018 Nov; 119(11):9357-9363. PubMed ID: 30010219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR-Cas9 interrogation of a putative fetal globin repressor in human erythroid cells.
    Chung JE; Magis W; Vu J; Heo SJ; Wartiovaara K; Walters MC; Kurita R; Nakamura Y; Boffelli D; Martin DIK; Corn JE; DeWitt MA
    PLoS One; 2019; 14(1):e0208237. PubMed ID: 30645582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Novel Role of the B-Cell Lymphoma/Leukemia 11A (BCL11A) Gene in β-Thalassaemia Treatment.
    Mahmoud Ahmed NH; Lai MI
    Cardiovasc Hematol Disord Drug Targets; 2023; 22(4):226-236. PubMed ID: 36734897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome editing using CRISPR-Cas9 to create the HPFH genotype in HSPCs: An approach for treating sickle cell disease and β-thalassemia.
    Ye L; Wang J; Tan Y; Beyer AI; Xie F; Muench MO; Kan YW
    Proc Natl Acad Sci U S A; 2016 Sep; 113(38):10661-5. PubMed ID: 27601644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome editing of HBG1 and HBG2 to induce fetal hemoglobin.
    Métais JY; Doerfler PA; Mayuranathan T; Bauer DE; Fowler SC; Hsieh MM; Katta V; Keriwala S; Lazzarotto CR; Luk K; Neel MD; Perry SS; Peters ST; Porter SN; Ryu BY; Sharma A; Shea D; Tisdale JF; Uchida N; Wolfe SA; Woodard KJ; Wu Y; Yao Y; Zeng J; Pruett-Miller S; Tsai SQ; Weiss MJ
    Blood Adv; 2019 Nov; 3(21):3379-3392. PubMed ID: 31698466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of novel HPFH-like mutations by CRISPR base editing that elevate the expression of fetal hemoglobin.
    Ravi NS; Wienert B; Wyman SK; Bell HW; George A; Mahalingam G; Vu JT; Prasad K; Bandlamudi BP; Devaraju N; Rajendiran V; Syedbasha N; Pai AA; Nakamura Y; Kurita R; Narayanasamy M; Balasubramanian P; Thangavel S; Marepally S; Velayudhan SR; Srivastava A; DeWitt MA; Crossley M; Corn JE; Mohankumar KM
    Elife; 2022 Feb; 11():. PubMed ID: 35147495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Editing a γ-globin repressor binding site restores fetal hemoglobin synthesis and corrects the sickle cell disease phenotype.
    Weber L; Frati G; Felix T; Hardouin G; Casini A; Wollenschlaeger C; Meneghini V; Masson C; De Cian A; Chalumeau A; Mavilio F; Amendola M; Andre-Schmutz I; Cereseto A; El Nemer W; Concordet JP; Giovannangeli C; Cavazzana M; Miccio A
    Sci Adv; 2020 Feb; 6(7):. PubMed ID: 32917636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia.
    Frangoul H; Altshuler D; Cappellini MD; Chen YS; Domm J; Eustace BK; Foell J; de la Fuente J; Grupp S; Handgretinger R; Ho TW; Kattamis A; Kernytsky A; Lekstrom-Himes J; Li AM; Locatelli F; Mapara MY; de Montalembert M; Rondelli D; Sharma A; Sheth S; Soni S; Steinberg MH; Wall D; Yen A; Corbacioglu S
    N Engl J Med; 2021 Jan; 384(3):252-260. PubMed ID: 33283989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A genome-editing strategy to treat β-hemoglobinopathies that recapitulates a mutation associated with a benign genetic condition.
    Traxler EA; Yao Y; Wang YD; Woodard KJ; Kurita R; Nakamura Y; Hughes JR; Hardison RC; Blobel GA; Li C; Weiss MJ
    Nat Med; 2016 Sep; 22(9):987-90. PubMed ID: 27525524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The HRI-regulated transcription factor ATF4 activates BCL11A transcription to silence fetal hemoglobin expression.
    Huang P; Peslak SA; Lan X; Khandros E; Yano JA; Sharma M; Keller CA; Giardine B; Qin K; Abdulmalik O; Hardison RC; Shi J; Blobel GA
    Blood; 2020 Jun; 135(24):2121-2132. PubMed ID: 32299090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.