These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Elucidation of Zhou W; Ye D; Tester DJ; Bains S; Giudicessi JR; Haglund-Turnquist CM; Orland KM; January CT; Eckhardt LL; Maginot KR; Ackerman MJ Circ Genom Precis Med; 2023 Apr; 16(2):e003726. PubMed ID: 37071726 [TBL] [Abstract][Full Text] [Related]
3. Promise and Potential Peril With Lumacaftor for the Trafficking Defective Type 2 Long-QT Syndrome-Causative Variants, p.G604S, p.N633S, and p.R685P, Using Patient-Specific Re-Engineered Cardiomyocytes. O'Hare BJ; John Kim CS; Hamrick SK; Ye D; Tester DJ; Ackerman MJ Circ Genom Precis Med; 2020 Oct; 13(5):466-475. PubMed ID: 32940533 [TBL] [Abstract][Full Text] [Related]
4. Prevalence and spectrum of large deletions or duplications in the major long QT syndrome-susceptibility genes and implications for long QT syndrome genetic testing. Tester DJ; Benton AJ; Train L; Deal B; Baudhuin LM; Ackerman MJ Am J Cardiol; 2010 Oct; 106(8):1124-8. PubMed ID: 20920651 [TBL] [Abstract][Full Text] [Related]
5. Genome Editing of Induced Pluripotent Stem Cells to Decipher Cardiac Channelopathy Variant. Garg P; Oikonomopoulos A; Chen H; Li Y; Lam CK; Sallam K; Perez M; Lux RL; Sanguinetti MC; Wu JC J Am Coll Cardiol; 2018 Jul; 72(1):62-75. PubMed ID: 29957233 [TBL] [Abstract][Full Text] [Related]
6. SGK1 inhibition attenuated the action potential duration in patient- and genotype-specific re-engineered heart cells with congenital long QT syndrome. Kim M; Das S; Tester DJ; Pradhananga S; Hamrick SK; Gao X; Srinivasan D; Sager PT; Ackerman MJ Heart Rhythm O2; 2023 Apr; 4(4):268-274. PubMed ID: 37124559 [TBL] [Abstract][Full Text] [Related]
8. Identification of large gene deletions and duplications in KCNQ1 and KCNH2 in patients with long QT syndrome. Eddy CA; MacCormick JM; Chung SK; Crawford JR; Love DR; Rees MI; Skinner JR; Shelling AN Heart Rhythm; 2008 Sep; 5(9):1275-81. PubMed ID: 18774102 [TBL] [Abstract][Full Text] [Related]
9. Pathogenic mechanism and gene correction for LQTS-causing double mutations in KCNQ1 using a pluripotent stem cell model. Wang Z; Wang L; Liu W; Hu D; Gao Y; Ge Q; Liu X; Li L; Wang Y; Wang S; Li C Stem Cell Res; 2019 Jul; 38():101483. PubMed ID: 31226583 [TBL] [Abstract][Full Text] [Related]
10. Identification novel LQT syndrome-associated variants in Polish population and genotype-phenotype correlations in eight families. Szperl M; Kozicka U; Kosiec A; Kukla P; Roszczynko M; Biernacka EK J Appl Genet; 2018 Nov; 59(4):463-469. PubMed ID: 30244407 [TBL] [Abstract][Full Text] [Related]
11. [Novel mutations of potassium channel KCNQ1 S145L and KCNH2 Y475C genes in Chinese pedigrees of long QT syndrome]. Liu WL; Hu DY; Li P; Li CL; Qin XG; Li YT; Li L; Li ZM; Dong W; Qi Y; Wang Q Zhonghua Nei Ke Za Zhi; 2006 Jun; 45(6):463-6. PubMed ID: 16831322 [TBL] [Abstract][Full Text] [Related]
12. Patient-Specific and Gene-Corrected Induced Pluripotent Stem Cell-Derived Cardiomyocytes Elucidate Single-Cell Phenotype of Short QT Syndrome. Guo F; Sun Y; Wang X; Wang H; Wang J; Gong T; Chen X; Zhang P; Su L; Fu G; Su J; Yang S; Lai R; Jiang C; Liang P Circ Res; 2019 Jan; 124(1):66-78. PubMed ID: 30582453 [TBL] [Abstract][Full Text] [Related]
13. Translation reinitiation in c.453delC frameshift mutation of KCNH2 producing functional hERG K+ channels with mild dominant negative effect in the heterozygote patient-derived iPSC cardiomyocytes. Park NK; Park SJ; Park YG; Moon SH; Woo J; Kim HJ; Kim SJ; Choi SW Hum Mol Genet; 2024 Jan; 33(2):110-121. PubMed ID: 37769355 [TBL] [Abstract][Full Text] [Related]
14. Mutation Analysis of KCNQ1, KCNH2 and SCN5A Genes in Taiwanese Long QT Syndrome Patients. Chang YS; Yang YW; Lin YN; Lin KH; Chang KC; Chang JG Int Heart J; 2015; 56(4):450-3. PubMed ID: 26118593 [TBL] [Abstract][Full Text] [Related]
15. Investigation of ion channel gene variants in patients with long QT syndrome. Ernesto C; Cruz FE; Lima FS; Coutinho JL; Silva R; Urményi TP; Carvalho AC; Rondinelli E Arq Bras Cardiol; 2011 Mar; 96(3):172-8. PubMed ID: 21308345 [TBL] [Abstract][Full Text] [Related]
16. Functional and clinical characterization of a novel homozygous KCNH2 missense variant in the pore region of Kv11.1 leading to a viable but severe long-QT syndrome. Delinière A; Jaupart L; Janin A; Millat G; Boulin T; Andrini O; Chevalier P Gene; 2024 Mar; 897():148076. PubMed ID: 38086455 [TBL] [Abstract][Full Text] [Related]
17. Physiological genomics identifies genetic modifiers of long QT syndrome type 2 severity. Chai S; Wan X; Ramirez-Navarro A; Tesar PJ; Kaufman ES; Ficker E; George AL; Deschênes I J Clin Invest; 2018 Mar; 128(3):1043-1056. PubMed ID: 29431731 [TBL] [Abstract][Full Text] [Related]
18. Functional testing for variant prioritization in a family with long QT syndrome. Najari Beidokhti M; Bertalovitz AC; Ji W; McCormack J; Jeffries L; Sempou E; Khokha MK; McDonald TV; Lakhani SA Mol Genet Genomics; 2021 Jul; 296(4):823-836. PubMed ID: 33876311 [TBL] [Abstract][Full Text] [Related]
19. KCNQ1 and KCNH2 mutations associated with long QT syndrome in a Chinese population. Liu W; Yang J; Hu D; Kang C; Li C; Zhang S; Li P; Chen Z; Qin X; Ying K; Li Y; Li Y; Li Z; Cheng X; Li L; Qi Y; Chen S; Wang Q Hum Mutat; 2002 Dec; 20(6):475-6. PubMed ID: 12442276 [TBL] [Abstract][Full Text] [Related]
20. Screening for copy number variation in genes associated with the long QT syndrome: clinical relevance. Barc J; Briec F; Schmitt S; Kyndt F; Le Cunff M; Baron E; Vieyres C; Sacher F; Redon R; Le Caignec C; Le Marec H; Probst V; Schott JJ J Am Coll Cardiol; 2011 Jan; 57(1):40-7. PubMed ID: 21185499 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]