These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 35144078)

  • 1. Nonlinear interaction of Rayleigh waves in isotropic materials: Numerical and experimental investigation.
    Gartsev S; Zuo P; Rjelka M; Mayer A; Köhler B
    Ultrasonics; 2022 May; 122():106664. PubMed ID: 35144078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the determination of the third-order elastic constants of homogeneous isotropic materials utilising Rayleigh waves.
    Mohabuth M; Khanna A; Hughes J; Vidler J; Kotousov A; Ng CT
    Ultrasonics; 2019 Jul; 96():96-103. PubMed ID: 30833179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An iterative method to evaluate one-dimensional pulsed nonlinear elastic wavefields and mixing of elastic waves in solids.
    Selvam S; Volker A; van Neer P; de Jong N; Verweij MD
    J Acoust Soc Am; 2022 May; 151(5):3316. PubMed ID: 35649942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cubic nonlinearity parameter measurement and material degradation detection using nonlinear ultrasonic three-wave mixing.
    Sampath S; Sohn H
    Ultrasonics; 2022 Apr; 121():106670. PubMed ID: 35026609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermo-acoustoelastic effect of Rayleigh wave: Theory and experimental verification.
    Zeng S; Zhu J; Zhong B; Li X
    Ultrasonics; 2023 May; 131():106948. PubMed ID: 36780767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Possible second-order nonlinear interactions of plane waves in an elastic solid.
    Korneev VA; Demčenko A
    J Acoust Soc Am; 2014 Feb; 135(2):591-8. PubMed ID: 25234869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental investigation of material nonlinearity using the Rayleigh surface waves excited and detected by angle beam wedge transducers.
    Zhang S; Li X; Jeong H; Hu H
    Ultrasonics; 2018 Sep; 89():118-125. PubMed ID: 29778060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling the propagation of ultrasonic waves in the interface region between two bonded elements.
    Delsanto PP; Hirsekorn S; Agostini V; Loparco R; Koka A
    Ultrasonics; 2002 May; 40(1-8):605-10. PubMed ID: 12160009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical simulation of nonlinear Lamb waves used in a thin plate for detecting buried micro-cracks.
    Wan X; Zhang Q; Xu G; Tse PW
    Sensors (Basel); 2014 May; 14(5):8528-46. PubMed ID: 24834908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of dynamic elastic constants from the amplitude and velocity of Rayleigh waves.
    Bayón A; Gascón F; Nieves FJ
    J Acoust Soc Am; 2005 Jun; 117(6):3469-77. PubMed ID: 16018451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mixing of two co-directional Rayleigh surface waves in a nonlinear elastic material.
    Morlock MB; Kim JY; Jacobs LJ; Qu J
    J Acoust Soc Am; 2015 Jan; 137(1):281-92. PubMed ID: 25618059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Second harmonic generation of shear waves in crystals.
    Jiang W; Cao W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Feb; 51(2):153-62. PubMed ID: 15055805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite-element analysis of non-collinear mixing of two lowest-order antisymmetric Rayleigh-Lamb waves.
    Ishii Y; Hiraoka K; Adachi T
    J Acoust Soc Am; 2018 Jul; 144(1):53. PubMed ID: 30075681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acoustic backscattering enhancements resulting from the interaction of an obliquely incident plane wave with an infinite cylinder.
    Mitri FG
    Ultrasonics; 2010 Jun; 50(7):675-82. PubMed ID: 20181372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A numerical study of non-collinear wave mixing and generated resonant components.
    Sun Z; Li F; Li H
    Ultrasonics; 2016 Sep; 71():245-255. PubMed ID: 27403643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface/sub-surface crack-scattered nonlinear rayleigh waves: A full analytical solution based on elastodynamic reciprocity theorem.
    Xu L; Wang K; Su Y; He Y; Yang J; Yuan S; Su Z
    Ultrasonics; 2022 Jan; 118():106578. PubMed ID: 34560381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling nonlinearity of guided ultrasonic waves in fatigued materials using a nonlinear local interaction simulation approach and a spring model.
    Radecki R; Su Z; Cheng L; Packo P; Staszewski WJ
    Ultrasonics; 2018 Mar; 84():272-289. PubMed ID: 29179158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A numerical model for the study of the difference frequency generated from nonlinear mixing of standing ultrasonic waves in bubbly liquids.
    Tejedor Sastre MT; Vanhille C
    Ultrason Sonochem; 2017 Jan; 34():881-888. PubMed ID: 27773316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical model of longitudinal wave scattering in polycrystals.
    Ghoshal G; Turner JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Jul; 56(7):1419-28. PubMed ID: 19574152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface Roughness Effects on Self-Interacting and Mutually Interacting Rayleigh Waves.
    Bakre C; Lissenden CJ
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.