These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 35144110)

  • 1. HrTCP20 dramatically enhance drought tolerance of sea buckthorn (Hippophae rhamnoides L). by mediating the JA signaling pathway.
    Yao Y; Dong L; Fu X; Zhao L; Wei J; Cao J; Sun Y; Liu J
    Plant Physiol Biochem; 2022 Mar; 174():51-62. PubMed ID: 35144110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HrCYP90B1 modulating brassinosteroid biosynthesis in sea buckthorn (Hippophae rhamnoides L.) against fruit fly (Rhagoletis batava obseuriosa Kol.) infection.
    Liu J; Wang Z; Zhao J; Zhao L; Wang L; Su Z; Wei J
    Tree Physiol; 2021 Mar; 41(3):444-459. PubMed ID: 33238299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An ABA-flavonoid relationship contributes to the differences in drought resistance between different sea buckthorn subspecies.
    Gao G; Lv Z; Zhang G; Li J; Zhang J; He C
    Tree Physiol; 2021 May; 41(5):744-755. PubMed ID: 33184668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptomic analysis of drought stress responses of sea buckthorn (Hippophae rhamnoidessubsp. sinensis) by RNA-Seq.
    Ye G; Ma Y; Feng Z; Zhang X
    PLoS One; 2018; 13(8):e0202213. PubMed ID: 30102736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptome and DNA methylome provide insights into the molecular regulation of drought stress in sea buckthorn.
    Lyu Z; Zhang G; Song Y; Diao S; He C; Zhang J
    Genomics; 2022 May; 114(3):110345. PubMed ID: 35321848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CmLOX10 positively regulates drought tolerance through jasmonic acid -mediated stomatal closure in oriental melon (Cucumis melo var. makuwa Makino).
    Xing Q; Liao J; Cao S; Li M; Lv T; Qi H
    Sci Rep; 2020 Oct; 10(1):17452. PubMed ID: 33060707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the
    Wang Z; Feng R; Zhang X; Su Z; Wei J; Liu J
    Genome; 2019 Oct; 62(10):689-703. PubMed ID: 31315001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unique features of the m
    Zhang G; Lv Z; Diao S; Liu H; Duan A; He C; Zhang J
    RNA Biol; 2021 Nov; 18(sup2):794-803. PubMed ID: 34806556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SbMYC2 mediates jasmonic acid signaling to improve drought tolerance via directly activating SbGR1 in sorghum.
    Wang G; Long Y; Jin X; Yang Z; Dai L; Yang Y; Lu G; Sun B
    Theor Appl Genet; 2024 Mar; 137(3):72. PubMed ID: 38446239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Histone H3K9 acetylation modulates gene expression of key enzymes in the flavonoid and abscisic acid pathways and enhances drought resistance of sea buckthorn.
    Li J; Wei J; Song Y; Chen N; Ni B; Zhang J; He C
    Physiol Plant; 2023; 175(3):e13936. PubMed ID: 37243928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Indole-3-acetic acid improves drought tolerance of white clover via activating auxin, abscisic acid and jasmonic acid related genes and inhibiting senescence genes.
    Zhang Y; Li Y; Hassan MJ; Li Z; Peng Y
    BMC Plant Biol; 2020 Apr; 20(1):150. PubMed ID: 32268884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Explicating genetic diversity based on ITS characterization and determination of antioxidant potential in sea buckthorn (Hippophae spp.).
    Haq SAU; Mir MA; Lone SM; Banoo A; Shafi F; Mir SA; Bhat JIA; Rashid R; Wani SH; Masoodi TH; Khan MN; Nehvi FA; Masoodi KZ
    Mol Biol Rep; 2022 Jun; 49(6):5229-5240. PubMed ID: 34387804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exogenous abscisic acid and jasmonic acid restrain polyethylene glycol-induced drought by improving the growth and antioxidative enzyme activities in pearl millet.
    Awan SA; Khan I; Rizwan M; Zhang X; Brestic M; Khan A; El-Sheikh MA; Alyemeni MN; Ali S; Huang L
    Physiol Plant; 2021 Jun; 172(2):809-819. PubMed ID: 33094486
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Meng YC; Zhang HF; Pan XX; Chen N; Hu HF; Haq SU; Khan A; Chen RG
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33809823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drought stress promotes xylem differentiation by modulating the interaction between cytokinin and jasmonic acid.
    Jang G; Choi YD
    Plant Signal Behav; 2018 Mar; 13(3):e1451707. PubMed ID: 29533132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comprehensive analysis of differentially expressed genes reveals the molecular response to elevated CO
    Zhang G; Zhang T; Liu J; Zhang J; He C
    Gene; 2018 Jun; 660():120-127. PubMed ID: 29574192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Jasmonic acid transient accumulation is needed for abscisic acid increase in citrus roots under drought stress conditions.
    de Ollas C; Hernando B; Arbona V; Gómez-Cadenas A
    Physiol Plant; 2013 Mar; 147(3):296-306. PubMed ID: 22671923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Jasmonic acid priming augments antioxidant defense and photosynthesis in soybean to alleviate combined heat and drought stress effects.
    Rahman MM; Mostofa MG; Keya SS; Ghosh PK; Abdelrahman M; Anik TR; Gupta A; Tran LP
    Plant Physiol Biochem; 2024 Jan; 206():108193. PubMed ID: 38029615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of fermented sea buckthorn (
    Liu X; Lv M; Maimaitiyiming R; Chen K; Tuerhong N; Yang J; Aihaiti A; Wang L
    Front Nutr; 2023; 10():1120748. PubMed ID: 36742432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological, biochemical, and proteome profiling reveals key pathways underlying the drought stress responses of Hippophae rhamnoides.
    He CY; Zhang GY; Zhang JG; Duan AG; Luo HM
    Proteomics; 2016 Oct; 16(20):2688-2697. PubMed ID: 27546101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.