BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 35144134)

  • 1. MicroRNAs as epigenetic regulators of orofacial development.
    Seelan RS; Pisano MM; Greene RM
    Differentiation; 2022; 124():1-16. PubMed ID: 35144134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. miRNAs as biomarkers of orofacial clefts: A systematic review.
    Mendes SMDA; Espinosa DDSG; Moreira PEO; Marques D; Fagundes NCF; Ribeiro-Dos-Santos Â
    J Oral Pathol Med; 2020 Mar; 49(3):201-209. PubMed ID: 31479540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of epigenetics and miRNAs in orofacial clefts.
    Garland MA; Sun B; Zhang S; Reynolds K; Ji Y; Zhou CJ
    Birth Defects Res; 2020 Nov; 112(19):1635-1659. PubMed ID: 32926553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MicroRNAs and Gene Regulatory Networks Related to Cleft Lip and Palate.
    Iwaya C; Suzuki A; Iwata J
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36834963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mouse models in palate development and orofacial cleft research: Understanding the crucial role and regulation of epithelial integrity in facial and palate morphogenesis.
    Lan Y; Jiang R
    Curr Top Dev Biol; 2022; 148():13-50. PubMed ID: 35461563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Orofacial Clefts: Genetics of Cleft Lip and Palate.
    Babai A; Irving M
    Genes (Basel); 2023 Aug; 14(8):. PubMed ID: 37628654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct DNA methylation profiles in subtypes of orofacial cleft.
    Sharp GC; Ho K; Davies A; Stergiakouli E; Humphries K; McArdle W; Sandy J; Davey Smith G; Lewis SJ; Relton CL
    Clin Epigenetics; 2017; 9():63. PubMed ID: 28603561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellular and developmental basis of orofacial clefts.
    Ji Y; Garland MA; Sun B; Zhang S; Reynolds K; McMahon M; Rajakumar R; Islam MS; Liu Y; Chen Y; Zhou CJ
    Birth Defects Res; 2020 Nov; 112(19):1558-1587. PubMed ID: 32725806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrated assessment of differentially expressed plasma microRNAs in subtypes of nonsyndromic orofacial clefts.
    Wu N; Yan J; Han T; Zou J; Shen W
    Medicine (Baltimore); 2018 Jun; 97(25):e11224. PubMed ID: 29924053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of DNA methylation in newborn blood samples from infants with and without orofacial clefts.
    Xu Z; Lie RT; Wilcox AJ; Saugstad OD; Taylor JA
    Clin Epigenetics; 2019 Mar; 11(1):40. PubMed ID: 30832715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developmental epigenetics of the murine secondary palate.
    Seelan RS; Mukhopadhyay P; Pisano MM; Greene RM
    ILAR J; 2012; 53(3-4):240-52. PubMed ID: 23744964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Progress of epigenetic modification of SATB2 gene in the pathogenesis of non-syndromic cleft lip and palate.
    Ma Y; Liu H; Shi L
    Asian J Surg; 2024 Jan; 47(1):72-76. PubMed ID: 37852859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current concepts in the embryology and genetics of cleft lip and cleft palate.
    Marazita ML; Mooney MP
    Clin Plast Surg; 2004 Apr; 31(2):125-40. PubMed ID: 15145658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MicroRNA-124-3p suppresses mouse lip mesenchymal cell proliferation through the regulation of genes associated with cleft lip in the mouse.
    Suzuki A; Yoshioka H; Summakia D; Desai NG; Jun G; Jia P; Loose DS; Ogata K; Gajera MV; Zhao Z; Iwata J
    BMC Genomics; 2019 Nov; 20(1):852. PubMed ID: 31727022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of lncRNAs and circRNAs in Orofacial Clefts.
    Seelan RS; Greene RM; Pisano MM
    Microrna; 2023; 12(3):171-176. PubMed ID: 38009000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The etiopathogenesis of cleft lip and cleft palate: usefulness and caveats of mouse models.
    Gritli-Linde A
    Curr Top Dev Biol; 2008; 84():37-138. PubMed ID: 19186243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comprehensive analysis of AHRR gene as a candidate for cleft lip with or without cleft palate.
    Linnenkamp BDW; Raskin S; Esposito SE; Herai RH
    Mutat Res Rev Mutat Res; 2020; 785():108319. PubMed ID: 32800270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variant analyses of candidate genes in orofacial clefts in multi-ethnic populations.
    Li M; Olotu J; Buxo-Martinez CJ; Mossey PA; Anand D; Busch T; Alade A; Gowans LJJ; Eshete M; Adeyemo WL; Naicker T; Awotoye WO; Gupta S; Adeleke C; Bravo V; Huang S; Adamson OO; Toraño AM; Bello CA; Soto M; Soto M; Ledesma R; Marquez M; Cordero JF; Lopez-Del Valle LM; Salcedo MI; Debs N; Petrin A; Malloy H; Elhadi K; James O; Ogunlewe MO; Abate F; Hailu A; Mohammed I; Gravem P; Deribew M; Gesses M; Hassan M; Pape J; Obiri-Yeboah S; Arthur FKN; Oti AA; Donkor P; Marazita ML; Lachke SA; Adeyemo AA; Murray JC; Butali A
    Oral Dis; 2022 Oct; 28(7):1921-1935. PubMed ID: 34061439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patched1 is required in neural crest cells for the prevention of orofacial clefts.
    Metzis V; Courtney AD; Kerr MC; Ferguson C; Rondón Galeano MC; Parton RG; Wainwright BJ; Wicking C
    Hum Mol Genet; 2013 Dec; 22(24):5026-35. PubMed ID: 23900075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wnt signaling in orofacial clefts: crosstalk, pathogenesis and models.
    Reynolds K; Kumari P; Sepulveda Rincon L; Gu R; Ji Y; Kumar S; Zhou CJ
    Dis Model Mech; 2019 Feb; 12(2):. PubMed ID: 30760477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.