These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 35144160)

  • 1. Laser decontamination microscopic process study on radioactive contaminations with Cs
    Wang Q; Chen H; Wang FS; Ai SF; Liao DS; Wen T
    Appl Radiat Isot; 2022 Apr; 182():110112. PubMed ID: 35144160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molten salts for efficient removal of radioactive contaminants from stainless steel surface: Mechanisms and applications.
    Lv H; Gao J; Chen J; Li T; Liang Y; Hu B; Ma F; Xue Y; Yan Y
    Environ Res; 2023 Dec; 239(Pt 1):117358. PubMed ID: 37821070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cesium and Strontium Contamination of Nuclear Plant Stainless Steel: Implications for Decommissioning and Waste Minimization.
    Lang AR; Engelberg DL; Walther C; Weiss M; Bosco H; Jenkins A; Livens FR; Law GTW
    ACS Omega; 2019 Sep; 4(11):14420-14429. PubMed ID: 31528795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Scanning Speed on Properties of Laser Surface Remelted 304 Stainless Steel.
    Chen Y; Li X; Liu J; Zhang Y; Chen X
    Micromachines (Basel); 2022 Aug; 13(9):. PubMed ID: 36144049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decontamination of uranium-containing radioactive waste from stainless steel surfaces using NaOH-based molten salts.
    Xue Y; Lv H; Gao J; Liang Y; Li T; Zheng Y; Wang G; Yan Y; Ma F
    Environ Sci Pollut Res Int; 2023 May; 30(23):64771-64777. PubMed ID: 37099110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding the Mechanism of Cs Accumulation on Stainless Steel Suspended in Nuclear High-Level Liquid Waste.
    Patra K; Sengupta A; Mittal VK; Bera S; Sahu AK; Valsala TP
    ACS Omega; 2022 Sep; 7(38):34190-34199. PubMed ID: 36188267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comprehensive study on the laser decontamination of surfaces contaminated with Cs(+) ion.
    Baigalmaa B; Won HJ; Moon JK; Jung CH; Hyun JH
    Appl Radiat Isot; 2009; 67(7-8):1526-9. PubMed ID: 19369082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Efficient Laser Decontamination Process Based on Non-Radioactive Specimens of Nuclear Power Materials.
    Hu Y; Liu C; Li K; Cheng J; Zhang Z; Han E
    Materials (Basel); 2023 Dec; 16(24):. PubMed ID: 38138785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on the Influence of Laser Power on the Heat-Flow Multi-Field Coupling of Laser Cladding Incoloy 926 on Stainless Steel Surface.
    Li L; Cui Q; Zhou J; Lu Z; Sun H; Jiang H; Guo W; Wu A
    Materials (Basel); 2024 Sep; 17(19):. PubMed ID: 39410341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decontamination of radioactive metal surfaces by electrocoagulation.
    Pujol Pozo AA; Bustos Bustos E; Monroy-Guzmán F
    J Hazard Mater; 2019 Jan; 361():357-366. PubMed ID: 30261460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removable coatings: Thermal stability and decontamination of steel surfaces from
    Lee EH; Boglaienko D; McNamara BK; Levitskaia TG
    Chemosphere; 2022 Aug; 301():134680. PubMed ID: 35469900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of low-temperature nitriding on the strain-induced martensite and laser-quenched austenite in a magnetic encoder made from 304L stainless steel.
    Leskovšek V; Godec M; Kogej P
    Sci Rep; 2016 Aug; 6():30979. PubMed ID: 27492862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of laser and environmental parameters on reducing microbial contamination of stainless steel surfaces with Nd:YAG laser irradiation.
    Watson IA; Wang RK; Peden I; Ward GD; Stewart-Tull DE; Wardlaw AC
    J Appl Microbiol; 2005; 99(4):934-44. PubMed ID: 16162246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of decontamination efficacy of cleaning solutions on stainless steel and glass surfaces contaminated by 10 antineoplastic agents.
    Queruau Lamerie T; Nussbaumer S; Décaudin B; Fleury-Souverain S; Goossens JF; Bonnabry P; Odou P
    Ann Occup Hyg; 2013 May; 57(4):456-69. PubMed ID: 23223271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interfacial Adhesion of Thick NiTi Coating on Substrate Stainless Steel.
    Samal S; Kopeček J; Šittner P
    Materials (Basel); 2022 Dec; 15(23):. PubMed ID: 36500094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of an Inert Gas Positive-Pressure Environment on Beryllium Melting under a Pulsed Laser.
    Sang Y; Xiao M; Zhang Z; Su J
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of the Microstructural Evolution of 18Cr2Ni4WA Steel during Vacuum Low-Pressure Carburizing Heat Treatment and Its Effect on Case Hardness.
    Wang B; He Y; Liu Y; Tian Y; You J; Wang Z; Wang G
    Materials (Basel); 2020 May; 13(10):. PubMed ID: 32443773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Particle generation by ultraviolet-laser ablation during surface decontamination.
    Lee DW; Cheng MD
    J Air Waste Manag Assoc; 2006 Nov; 56(11):1591-8. PubMed ID: 17117745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study on the Variation in Microstructure of a Ferritic Stainless Steel with Surface Roughness and Thermal Cycling in Air.
    Song MY; Mumm DR; Kwak YJ
    J Nanosci Nanotechnol; 2021 Aug; 21(8):4372-4382. PubMed ID: 33714330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microstructure Evolution and Orientation Relationship of Reverted Austenite in 13Cr Supermartensitic Stainless Steel During the Tempering Process.
    Zhang Y; Zhang C; Yuan X; Li D; Yin Y; Li S
    Materials (Basel); 2019 Feb; 12(4):. PubMed ID: 30781433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.