BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 35144391)

  • 1. Identification of differentially expressed genes associated with coronary in-stent restenosis by integrated bioinformatics approaches.
    Chen M; Dun Y; Zhang W; Liu S
    Ann Palliat Med; 2022 Jun; 11(6):1940-1953. PubMed ID: 35144391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrated microarray for identifying the hub mRNAs and constructed miRNA-mRNA network in coronary in-stent restenosis.
    Song L; Feng Y; Tian F; Liu X; Jin S; Wang C; Tang W; Duan J; Guo N; Shen X; Hu J; Zou H; Gu W; Liu K; Pang L
    Physiol Genomics; 2022 Oct; 54(10):371-379. PubMed ID: 35968900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of Differentially Expressed Genes Associated with Idiopathic Pulmonary Arterial Hypertension by Integrated Bioinformatics Approaches.
    Zhao E; Xie H; Zhang Y
    J Comput Biol; 2021 Jan; 28(1):79-88. PubMed ID: 32493063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differentially expressed miR-152, a potential biomarker for in-stent restenosis (ISR) in peripheral blood mononuclear cells (PBMCs) of coronary artery disease (CAD) patients.
    Maheronnaghsh M; Niktab I; Enayati S; Amoli MM; Hosseini SK; Tavakkoly-Bazzaz J
    Nutr Metab Cardiovasc Dis; 2021 Apr; 31(4):1137-1147. PubMed ID: 33712363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying C1QB, ITGAM, and ITGB2 as potential diagnostic candidate genes for diabetic nephropathy using bioinformatics analysis.
    Hu Y; Yu Y; Dong H; Jiang W
    PeerJ; 2023; 11():e15437. PubMed ID: 37250717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predictive value of miRNA-126 on in-stent restenosis in patients with coronary heart disease: A protocol for meta-analysis and bioinformatics analysis.
    Qiu X; Wang J; Shi Z; Ji X; Huang Y; Dai H
    Medicine (Baltimore); 2021 Jun; 100(22):e25887. PubMed ID: 34087832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of osteoporosis ferroptosis-related markers and potential therapeutic compounds based on bioinformatics methods and molecular docking technology.
    Long SW; Li SH; Li J; He Y; Tan B; Jing HH; Zheng W; Wu J
    BMC Med Genomics; 2024 Apr; 17(1):99. PubMed ID: 38650009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of key genes and immune infiltration in osteoarthritis through analysis of zinc metabolism-related genes.
    You X; Ye Y; Lin S; Zhang Z; Guo H; Ye H
    BMC Musculoskelet Disord; 2024 Mar; 25(1):227. PubMed ID: 38509535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrated bioinformatics analysis for differentially expressed genes and signaling pathways identification in gastric cancer.
    Yang C; Gong A
    Int J Med Sci; 2021; 18(3):792-800. PubMed ID: 33437215
    [No Abstract]   [Full Text] [Related]  

  • 10. Identification and validation of oxidative stress-related genes in sepsis-induced myopathy.
    Zhang N; Huang D; Li X; Yan J; Yan Q; Ge W; Zhou J
    Medicine (Baltimore); 2024 May; 103(18):e37933. PubMed ID: 38701300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study on potential differentially expressed genes in stroke by bioinformatics analysis.
    Yang X; Wang P; Yan S; Wang G
    Neurol Sci; 2022 Feb; 43(2):1155-1166. PubMed ID: 34313877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of Key Inflammation-related Genes as Potential Diagnostic Biomarkers of Sepsis.
    Guo P; Wang R; Shen J; Zhang L; Mo W
    Altern Ther Health Med; 2023 Jul; 29(5):24-31. PubMed ID: 37235492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioinformatics analyses of gene expression profile identify key genes and functional pathways involved in cutaneous lupus erythematosus.
    Gao ZY; Su LC; Wu QC; Sheng JE; Wang YL; Dai YF; Chen AP; He SS; Huang X; Yan GQ
    Clin Rheumatol; 2022 Feb; 41(2):437-452. PubMed ID: 34553293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of key microRNAs and genes in preeclampsia by bioinformatics analysis.
    Luo S; Cao N; Tang Y; Gu W
    PLoS One; 2017; 12(6):e0178549. PubMed ID: 28594854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of differentially expressed genes, transcription factors, microRNAs and pathways in neutrophils of sepsis patients through bioinformatics analysis.
    Zheng Y; Peng L; He Z; Zou Z; Li F; Huang C; Li W
    Cell Mol Biol (Noisy-le-grand); 2022 Feb; 67(5):405-420. PubMed ID: 35818227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioinformatics analysis of mRNA and miRNA microarray to identify the key miRNA-mRNA pairs in cisplatin-resistant ovarian cancer.
    Xue B; Li S; Jin X; Liu L
    BMC Cancer; 2021 Apr; 21(1):452. PubMed ID: 33892654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Employing bioinformatics analysis to identify hub genes and microRNAs involved in colorectal cancer.
    Ebadfardzadeh J; Kazemi M; Aghazadeh A; Rezaei M; Shirvaliloo M; Sheervalilou R
    Med Oncol; 2021 Aug; 38(9):114. PubMed ID: 34390411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploration of the pathogenesis of Sjögren's syndrome via DNA methylation and transcriptome analyses.
    Du Y; Li J; Wu J; Zeng F; He C
    Clin Rheumatol; 2022 Sep; 41(9):2765-2777. PubMed ID: 35562622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prognostic values and prospective pathway signaling of MicroRNA-182 in ovarian cancer: a study based on gene expression omnibus (GEO) and bioinformatics analysis.
    Li Y; Li L
    J Ovarian Res; 2019 Nov; 12(1):106. PubMed ID: 31703725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated bioinformatics analysis for the screening of hub genes and therapeutic drugs in ovarian cancer.
    Yang D; He Y; Wu B; Deng Y; Wang N; Li M; Liu Y
    J Ovarian Res; 2020 Jan; 13(1):10. PubMed ID: 31987036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.