BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 35144614)

  • 21. Estimating Cognitive Workload in an Interactive Virtual Reality Environment Using EEG.
    Tremmel C; Herff C; Sato T; Rechowicz K; Yamani Y; Krusienski DJ
    Front Hum Neurosci; 2019; 13():401. PubMed ID: 31803035
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exploring Horizontally Flipped Interaction in Virtual Reality for Improving Spatial Ability.
    Bozgeyikli LL; Bozgeyikli E; Schnell C; Clark J
    IEEE Trans Vis Comput Graph; 2023 Nov; 29(11):4514-4524. PubMed ID: 37831578
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Clinical trainee performance on task-based AR/VR-guided surgical simulation is correlated with their 3D image spatial reasoning scores.
    Eagleson R; Kikinov D; Bilbie L; de Ribaupierre S
    Healthc Technol Lett; 2024; 11(2-3):117-125. PubMed ID: 38638489
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cognitive Load Measurement in a Virtual Reality-based Driving System for Autism Intervention.
    Zhang L; Wade J; Bian D; Fan J; Swanson A; Weitlauf A; Warren Z; Sarkar N
    IEEE Trans Affect Comput; 2017; 8(2):176-189. PubMed ID: 28966730
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Visual modalities-based multimodal fusion for surgical phase recognition.
    Park B; Chi H; Park B; Lee J; Jin HS; Park S; Hyung WJ; Choi MK
    Comput Biol Med; 2023 Nov; 166():107453. PubMed ID: 37774560
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Approaches to Laparoscopic Training in Veterinary Medicine: A Review of Personalized Simulators.
    Dejescu CA; Bel LV; Melega I; Muresan SMC; Oana LI
    Animals (Basel); 2023 Dec; 13(24):. PubMed ID: 38136818
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Method for Assessing the Influence of Phobic Stimuli in Virtual Simulators.
    Obukhov A; Krasnyanskiy M; Volkov A; Nazarova A; Teselkin D; Patutin K; Zajceva D
    J Imaging; 2023 Sep; 9(10):. PubMed ID: 37888302
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Virtual reality and augmented reality- emerging screening and diagnostic techniques in ophthalmology: A systematic review.
    Ma MKI; Saha C; Poon SHL; Yiu RSW; Shih KC; Chan YK
    Surv Ophthalmol; 2022; 67(5):1516-1530. PubMed ID: 35181279
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Automated algorithm aided capacity and confidence boost in surgical decision-making training for inferior clivus.
    Tang K; Bu B; Tian H; Li Y; Jiang X; Qian Z; Zhou Y
    Front Surg; 2024; 11():1375861. PubMed ID: 38699561
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structured feedback and operative video debriefing with critical view of safety annotation in training of laparoscopic cholecystectomy: a randomized controlled study.
    Cizmic A; Häberle F; Wise PA; Müller F; Gabel F; Mascagni P; Namazi B; Wagner M; Hashimoto DA; Madani A; Alseidi A; Hackert T; Müller-Stich BP; Nickel F
    Surg Endosc; 2024 Jun; 38(6):3241-3252. PubMed ID: 38653899
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Surgical Sabermetrics: A Scoping Review of Technology-enhanced Assessment of Nontechnical Skills in the Operating Room.
    Howie EE; Ambler O; Gunn EGM; Dias RD; Wigmore SJ; Skipworth RJE; Yule SJ
    Ann Surg; 2024 Jun; 279(6):973-984. PubMed ID: 38258573
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multimodal Approach to Assess a Virtual Reality-based Surgical Training Platform.
    Demirel D; Keles HO; Modak C; Basturk KK; Barker JR; Halic T
    Virtual Augment Mixed Real (2023); 2023 Jul; 14027():430-440. PubMed ID: 37961730
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metaverse Wearables for Immersive Digital Healthcare: A Review.
    Kim K; Yang H; Lee J; Lee WG
    Adv Sci (Weinh); 2023 Nov; 10(31):e2303234. PubMed ID: 37740417
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adding Safety Rules to Surgeon-Authored Virtual Reality Training.
    Gao R; Kurenov S; Black EW; Peters J
    Simul Healthc; 2023 Dec; 18(6):400-407. PubMed ID: 37342919
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantitative influence and performance analysis of virtual reality laparoscopic surgical training system.
    Yu P; Pan J; Wang Z; Shen Y; Li J; Hao A; Wang H
    BMC Med Educ; 2022 Feb; 22(1):92. PubMed ID: 35144614
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Validation of a novel virtual reality simulation system with the focus on training for surgical dissection during laparoscopic sigmoid colectomy.
    Mori T; Ikeda K; Takeshita N; Teramura K; Ito M
    BMC Surg; 2022 Jan; 22(1):12. PubMed ID: 34998376
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cognitive load and performance in immersive virtual reality versus conventional virtual reality simulation training of laparoscopic surgery: a randomized trial.
    Frederiksen JG; Sørensen SMD; Konge L; Svendsen MBS; Nobel-Jørgensen M; Bjerrum F; Andersen SAW
    Surg Endosc; 2020 Mar; 34(3):1244-1252. PubMed ID: 31172325
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Subjective vs. objective assessment of simulation performance on laparoscopic cholecystectomy: are we evaluating the right things?
    Kojima Y; Wong HJ; Kuchta K; Linn JG; Haggerty SP; Denham W; Ujiki MB
    Surg Endosc; 2022 Sep; 36(9):6661-6671. PubMed ID: 35106638
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Current state of virtual reality simulation in robotic surgery training: a review.
    Bric JD; Lumbard DC; Frelich MJ; Gould JC
    Surg Endosc; 2016 Jun; 30(6):2169-78. PubMed ID: 26304107
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.